The homoclinic bifurcations in four dimensional vector fields are investigated by setting up a local coordinates near the homoclinic orbit. This homoclinic orbit is nonprincipal in the meanings that its positive semi-...The homoclinic bifurcations in four dimensional vector fields are investigated by setting up a local coordinates near the homoclinic orbit. This homoclinic orbit is nonprincipal in the meanings that its positive semi-orbit takes orbit flip and its unstable foliation takes inclination flip. The existence, nonexistence, uniqueness and coexistence of the 1-homoclinic orbit and the 1-periodic orbit are studied. The existence of the twofold periodic orbit and three-fold periodic orbit are also obtained.展开更多
In this paper, the heteroclinic bifurcation problem with real eigenvalues and two incli- nation-flips is investigated in a four-dimensional reversible system. We perform a detailed study of this case by using the meth...In this paper, the heteroclinic bifurcation problem with real eigenvalues and two incli- nation-flips is investigated in a four-dimensional reversible system. We perform a detailed study of this case by using the method originally established in the papers "Problems in Homoclinic Bifurcation with Higher Dimensions" and "Bifurcation of Heteroclinic Loops," and obtain fruitful results, such as the existence and coexistence of R-symmetric homoclinic orbit and R-symmetric heteroclinic loops, R-symmetric homoclinic orbit and R-symmetric periodic orbit. The double R-symmetric homoclinic bifurcation (i.e., two-fold R-symmetric homoclinic bifurcation) for reversible heteroclinic loops is found, and the existence of infinitely many R-symmetric periodic orbits accumulating onto a homoclinic orbit is demonstrated. The relevant bifurcation surfaces and the existence regions are also located.展开更多
The paper studies a codimension-4 resonant homoclinic bifurcation with one orbit flip and two inclination flips, where the resonance takes place in the tangent direction of homoclinic orbit.Local active coordinate sys...The paper studies a codimension-4 resonant homoclinic bifurcation with one orbit flip and two inclination flips, where the resonance takes place in the tangent direction of homoclinic orbit.Local active coordinate system is introduced to construct the Poincar′e returning map, and also the associated successor functions. We prove the existence of the saddle-node bifurcation, the perioddoubling bifurcation and the homoclinic-doubling bifurcation, and also locate the corresponding 1-periodic orbit, 1-homoclinic orbit, double periodic orbits and some 2n-homoclinic orbits.展开更多
A high-codimension homoclinic bifurcation is considered with one orbit flip and two inclination flips accompanied by resonant principal eigenvalues. A local active coordinate system in a small neighborhood of homoclin...A high-codimension homoclinic bifurcation is considered with one orbit flip and two inclination flips accompanied by resonant principal eigenvalues. A local active coordinate system in a small neighborhood of homoclinic orbit is introduced. By analysis of the bifurcation equation, the authors obtain the conditions when the original flip homoclinic orbit is kept or broken. The existence and the existence regions of several double periodic orbits and one triple periodic orbit bifurcations are proved. Moreover, the complicated homoclinic-doubling bifurcations are found and expressed approximately.展开更多
文摘The homoclinic bifurcations in four dimensional vector fields are investigated by setting up a local coordinates near the homoclinic orbit. This homoclinic orbit is nonprincipal in the meanings that its positive semi-orbit takes orbit flip and its unstable foliation takes inclination flip. The existence, nonexistence, uniqueness and coexistence of the 1-homoclinic orbit and the 1-periodic orbit are studied. The existence of the twofold periodic orbit and three-fold periodic orbit are also obtained.
基金supported by National Natural Science Foundation of China (Grant No. 10671069)
文摘In this paper, the heteroclinic bifurcation problem with real eigenvalues and two incli- nation-flips is investigated in a four-dimensional reversible system. We perform a detailed study of this case by using the method originally established in the papers "Problems in Homoclinic Bifurcation with Higher Dimensions" and "Bifurcation of Heteroclinic Loops," and obtain fruitful results, such as the existence and coexistence of R-symmetric homoclinic orbit and R-symmetric heteroclinic loops, R-symmetric homoclinic orbit and R-symmetric periodic orbit. The double R-symmetric homoclinic bifurcation (i.e., two-fold R-symmetric homoclinic bifurcation) for reversible heteroclinic loops is found, and the existence of infinitely many R-symmetric periodic orbits accumulating onto a homoclinic orbit is demonstrated. The relevant bifurcation surfaces and the existence regions are also located.
文摘The paper studies a codimension-4 resonant homoclinic bifurcation with one orbit flip and two inclination flips, where the resonance takes place in the tangent direction of homoclinic orbit.Local active coordinate system is introduced to construct the Poincar′e returning map, and also the associated successor functions. We prove the existence of the saddle-node bifurcation, the perioddoubling bifurcation and the homoclinic-doubling bifurcation, and also locate the corresponding 1-periodic orbit, 1-homoclinic orbit, double periodic orbits and some 2n-homoclinic orbits.
基金supported by the National Natural Science Foundation of China(No.11126097)
文摘A high-codimension homoclinic bifurcation is considered with one orbit flip and two inclination flips accompanied by resonant principal eigenvalues. A local active coordinate system in a small neighborhood of homoclinic orbit is introduced. By analysis of the bifurcation equation, the authors obtain the conditions when the original flip homoclinic orbit is kept or broken. The existence and the existence regions of several double periodic orbits and one triple periodic orbit bifurcations are proved. Moreover, the complicated homoclinic-doubling bifurcations are found and expressed approximately.