Neurodegenerative diseases cause great medical and economic burdens for both patients and society;however, the complex molecular mechanisms thereof are not yet well understood. With the development of high-coverage se...Neurodegenerative diseases cause great medical and economic burdens for both patients and society;however, the complex molecular mechanisms thereof are not yet well understood. With the development of high-coverage sequencing technology, researchers have started to notice that genomic repeat regions, previously neglected in search of disease culprits, are active contributors to multiple neurodegenerative diseases. In this review, we describe the association between repeat element variants and multiple degenerative diseases through genome-wide association studies and targeted sequencing. We discuss the identification of disease-relevant repeat element variants, further powered by the advancement of long-read sequencing technologies and their related tools, and summarize recent findings in the molecular mechanisms of repeat element variants in brain degeneration, such as those causing transcriptional silencing or RNA-mediated gain of toxic function. Furthermore, we describe how in silico predictions using innovative computational models, such as deep learning language models, could enhance and accelerate our understanding of the functional impact of repeat element variants. Finally, we discuss future directions to advance current findings for a better understanding of neurodegenerative diseases and the clinical applications of genomic repeat elements.展开更多
The influence of variable viscosity and double diffusion on the convective stability of a nanofluid flow in an inclined porous channel is investigated.The DarcyBrinkman model is used to characterize the fluid flow dyn...The influence of variable viscosity and double diffusion on the convective stability of a nanofluid flow in an inclined porous channel is investigated.The DarcyBrinkman model is used to characterize the fluid flow dynamics in porous materials.The analytical solutions are obtained for the unidirectional and completely developed flow.Based on a normal mode analysis,the generalized eigenvalue problem under a perturbed state is solved.The eigenvalue problem is then solved by the spectral method.Finally,the critical Rayleigh number with the corresponding wavenumber is evaluated at the assigned values of the other flow-governing parameters.The results show that increasing the Darcy number,the Lewis number,the Dufour parameter,or the Soret parameter increases the stability of the system,whereas increasing the inclination angle of the channel destabilizes the flow.Besides,the flow is the most unstable when the channel is vertically oriented.展开更多
This paper deals with the bearing capacity determination of strip footing on a rock mass in hilly area by considering the influence of inclined and eccentric loading. Applying the generalized HoekBrown failure criteri...This paper deals with the bearing capacity determination of strip footing on a rock mass in hilly area by considering the influence of inclined and eccentric loading. Applying the generalized HoekBrown failure criterion, the failure behavior of the rock mass is modeled with the help of the power cone programming in the lower bound finite element limit analysis framework. Using bearing capacity factor(Ns), the change in bearing capacity of the strip footing due to the occurrence of eccentrically inclined loading is presented. The variations of the magnitude of Ns are obtained by examining the effects of the Hoek-Brown rock mass strength parameters(uniaxial compressive strength(sci), disturbance factor(D), rock parameter(mi), and Geological Strength Index(GSI)) in the presence of different magnitudes of eccentricity(e) and inclination angle(λ) with respect to the vertical plane, and presented as design charts. Both the inclined loading modes, i.e., inclination towards the center of strip footing(+λ) and inclination away from the center of strip footing(-λ), are adopted to perform the investigation. In addition, the correlation between the input parameters and the corresponding output is developed by utilizing the artificial neural network(ANN). Additionally, from sensitivity analysis, it is observed that inclination angle(λ) is the most sensitive parameter. For practicing engineers, the obtained design equation and design charts can be beneficial to understand the bearing capacity variation in the existence of eccentrically inclined loading in mountain areas.展开更多
The Nuri deposit is the only Cu-W-Mo polymetallic deposit with large-scale WO3 resources in the eastern section of the Gangdese metallogenic belt,Tibet,China.However,the genetic type of this deposit has been controver...The Nuri deposit is the only Cu-W-Mo polymetallic deposit with large-scale WO3 resources in the eastern section of the Gangdese metallogenic belt,Tibet,China.However,the genetic type of this deposit has been controversial since its discovery.Based on a study of the geological characteristics of the deposit,this study presents mineralization stages,focusing on the oxide stage and the quartz-sulfide stage where scheelite is mainly formed,referred to as Sch-A and Sch-B,respectively.Through LA-ICP-MS trace element and Sr isotope analyses,the origin,evolutionary process of the oreforming fluid and genesis of the ore deposit are investigated.Scanning Electron Microscope-Cathodoluminescence(SEMCL)observations reveal that Sch-A consists of three generations,with dark gray homogenous Sch-A1 being replaced by relatively lighter and homogeneous Sch-A2 and Sch-A3,with Sch-A2 displaying a gray CL image color with vague and uneven growth bands and Sch-A3 has a light gray CL image color with hardly any growth band.In contrast,Sch-B exhibits a‘core-rim’structure,with the core part(Sch-B1)being dark gray and displaying a uniform growth band,while the rim part(Sch-B2)is light gray and homogeneous.The normalized distribution pattern of rare earth elements in scheelite and Sr isotope data suggest that the early ore-forming fluid in the Nuri deposit originated from granodiorite porphyry and,later on,some country rock material was mixed in,due to strong water-rock interaction.Combining the O-H isotope data further indicates that the ore-forming fluid in the Nuri deposit originated from magmatic-hydrothermal sources,with contributions from metamorphic water caused by water-rock interaction during the mineralization process,as well as later meteoric water.The intense water-rock interaction likely played a crucial role in the precipitation of scheelite,leading to varying Eu anomalies in different generations of scheelite from the oxide stage to the quartz-sulfide stage,while also causing a gradual decrease in oxygen fugacity(fO2)and a slow rise in pH value.Additionally,the high Mo and low Sr contents in the scheelite are consistent with typical characteristics of magmatic-hydrothermal scheelite.Therefore,considering the geological features of the deposit,the geochemical characteristics of scheelite and the O-H isotope data published previously,it can be concluded that the genesis of the Nuri deposit belongs to porphyry-skarn deposit.展开更多
The scattering of normally incident water waves by two surface-piercing inclined perforated barriers in water with a uniform finite depth is investigated within the framework of linear water wave theory.Considering th...The scattering of normally incident water waves by two surface-piercing inclined perforated barriers in water with a uniform finite depth is investigated within the framework of linear water wave theory.Considering that thin barriers are zero-thickness,a novel numerical method involving the the coupling of the dual boundary element method(DBEM)with damping layers is applied.In order to effectively damp out the reflected waves,two damping layers,instead of pseudoboundaries are implemented near the two side boundaries of the computational domain.Thus,the modified linearized free surface boundary conditions are formulated and used for solving both the ordinary boundary integral equation as well as the hypersingular boundary integral equation for degenerate boundaries.The newly developed numerical method is validated against analytical methods using the matched eigenfunction expansion method for the special case of two vertical barriers or the inclined angle to the vertical being zero.The influence of the length of the two damping layers has been discussed.Moreover,these findings are also validated against previous results for several cases.After validation,the numerical results for the reflection coefficient,transmission coefficient and dissipation coefficient are obtained by varying the inclination angle and porosity-effect parameter.The effects of both the inclination angle and the porosity on the amplitudes of wave forces acting on both the front and rear barriers are also investigated.It is found that the effect of the inclination angle mainly shifts the location of the extremal values of the reflection and the transmission coefficients.Additionally,a moderate value of the porosity-parameter is quite effective at dissipating wave energy and mitigating the wave loads on dual barriers.展开更多
The organic matter(OM)enrichment mechanisms and depositional environment characteristics of lacustrine source rocks in the western Bozhong Sag,Bohai Bay Basin in Northeast China remain controversial.To address these i...The organic matter(OM)enrichment mechanisms and depositional environment characteristics of lacustrine source rocks in the western Bozhong Sag,Bohai Bay Basin in Northeast China remain controversial.To address these issues,based on Rock-Eval pyrolysis,kerogen macerals,H/C and O/C ratios,GC-MS,major and trace elements,the Dongying Formation Member(Mbr)3(E_(3)d_(3)),the Shahejie Formation mbrs 1 and 2(E_(2)s_(1+2)),and the Shahejie Mbr 3(E_(2)s_(3))source rocks in the western Bozhong Sag were studied.The above methods were used to reveal their geochemical properties,OM origins and depositional environments,all of which indicate that E_(2)s_(1+2)and E_(2)s_(3)are excellent source rocks,and that E_(3)d_(3)is of the second good quality.E_(3)d_(3)source rocks were formed under a warm and humid climate,mainly belong to fluvial/delta facies,the E_(3)d_(3)sediments formed under weakly oxidizing and freshwater conditions.Comparatively,the depositional environments of E_(2)s_(1+2)source rocks were arid and cold climate,representing saline or freshwater lacustrine facies,and the sediments of E_(2)s_(1+2)belong to anoxic or suboxic settings with large evaporation and salinity.During the period of E_(2)s_(3),the climate became warm and humid,indicating the freshwater lacustrine facies,and E_(2)s_(3)was characterized by freshwater and abundant algae.Moreover,compared with other intervals,the OM origin of E_(3)d_(3)source rocks has noticeable terrestrial input.The OM origin of the E_(2)s_(1+2)and E_(2)s_(3)are mainly plankton and bacteria.Tectonic subsidence and climate change have affected the changes of the depositional environment in the western Bozhong Sag,thus controlling the distribution of the source rocks,the geochemical characteristics in the three intervals of lacustrine source rocks have distinct differences.Overall,these factors are effective to evaluate the paleoenvironmental characteristics of source rocks by biomarkers,major and trace elements.The established models may have positive implications for research of lacustrine source rocks in offshore areas with few drillings.展开更多
In this paper,we study the onset and development of three-dimensional convection in a tilted porous layer saturated with a liquid.The layer is subjected to a gravitational field and a strictly vertical temperature gra...In this paper,we study the onset and development of three-dimensional convection in a tilted porous layer saturated with a liquid.The layer is subjected to a gravitational field and a strictly vertical temperature gradient.Typically,problems of thermal convection in tilted porous media saturated with a liquid are studied by assuming constant different temperatures at the boundaries of the layer,which prevent these systems from supporting conductive(non-convective)states.The boundary conditions considered in the present work allow a conductive state and are representative of typical geological applications.In an earlier work,we carried out a linear stability analysis of the conductive state.It was shown that at any layer tilt angles,the most dangerous type of disturbances are longitudinal rolls.Moreover,a non-zero velocity component exists in z-direction.In the present work,threedimensional non-linear convection regimes are studied.The original three-dimensional problem is reduced to two-dimensional one with an analytical expression for the velocity z-component v_(z)=v_(z)(x,y).It is shown that the critical Rayleigh number values obtained through numerical solutions of the obtained 2D problem by a finite difference method for different layer inclination angles,are in a good agreement with those predicted by the linear theory.The number of convective rolls realized in nonlinear calculations also fits the linear theory predictions for a given cavity geometry.Calculations carried out at low supercriticalities show that a direct bifurcation takes place.With increasing supercriticality,no transitions to other convective regimes are detected.The situation studied in this problem can be observed in oil-bearing rock formations under the influence of a geothermal temperature gradient,where the ensuing fluid convection can affect the distribution of oil throughout the layer.展开更多
A shaking table test for a bridge foundation reinforced by anti-slide piles on a silty clay landslide model with an inclined interlayer was performed.The deformation characteristics of the bridge foundation piles and ...A shaking table test for a bridge foundation reinforced by anti-slide piles on a silty clay landslide model with an inclined interlayer was performed.The deformation characteristics of the bridge foundation piles and anti-slide piles were analyzed in different loading conditions.The dynamic response law of a silty clay landslide with an inclined interlayer was summarized.The spacing between the rear anti-slide piles and bridge foundation should be reasonably controlled according to the seismic fortification requirements,to avoid the two peaks in the forced deformation of the bridge foundation piles.The“blocking effect”of the bridge foundation piles reduced the deformation of the forward anti-slide piles.The stress-strain response of silty clay was intensified as the vibration wave field appeared on the slope.Since the vibration intensified,the thrust distribution of the landslide underwent a process of shifting from triangle to inverted trapezoid,the difference in the acceleration response between the bearing platform and silty clay landslide tended to decrease,and the spectrum amplitude near the natural vibration frequency increased.The rear anti-slide piles were able to slow down the shear deformation of the soil in front of the piles and avoid excessive acceleration response of the bridge foundation piles.展开更多
The boundary element method(BEM)is a popular method for solving acoustic wave propagation problems,especially those in exterior domains,owing to its ease in handling radiation conditions at infinity.However,BEM models...The boundary element method(BEM)is a popular method for solving acoustic wave propagation problems,especially those in exterior domains,owing to its ease in handling radiation conditions at infinity.However,BEM models must meet the requirement of 6–10 elements per wavelength,using the conventional constant,linear,or quadratic elements.Therefore,a large storage size of memory and long solution time are often needed in solving higher-frequency problems.In this work,we propose two new types of enriched elements based on conventional constant boundary elements to improve the computational efficiency of the 2D acoustic BEM.The first one uses a plane wave expansion,which can be used to model scattering problems.The second one uses a special plane wave expansion,which can be used tomodel radiation problems.Five examples are investigated to showthe advantages of the enriched elements.Compared with the conventional constant elements,the new enriched elements can deliver results with the same accuracy and in less computational time.This improvement in the computational efficiency is more evident at higher frequencies(with the nondimensional wave numbers exceeding 100).The paper concludes with the potential of our proposed enriched elements and plans for their further improvement.展开更多
Lateral intakes are common in rivers.The pump effciency and sediment deposition are determined by the local hydrodynamic characteristics and mainstream division width.The hydraulic characteristics of lateral withdrawa...Lateral intakes are common in rivers.The pump effciency and sediment deposition are determined by the local hydrodynamic characteristics and mainstream division width.The hydraulic characteristics of lateral withdrawal from inclined river slopes at different intake elevations should be investigated.Meanwhile,the division width exhibits significant vertical non-uniformity at an inclined river slope,which should be clarified.Hence,a three-dimensional(3-D)hydrodynamic and particle-tracking model was developed with the Open Source Field Operation and Manipulation(Open FOAM),and the model was validated with physical model tests for 90°lateral withdrawal from an inclined side bank.The flow fields,withdrawal sources,and division widths were investigated with different intake bottom elevations,withdrawal discharges,and main channel velocities.This study showed that under inclined side bank conditions,water entered the intake at an oblique angle,causing significant 3-D spiral flows in the intake rather than two-dimensional closed recirculation.A lower withdrawal discharge,a lower bottom elevation of the intake,or a higher main channel velocity could further strengthen this phenomenon.The average division width and turbulent kinetic energy were smaller under inclined side bank conditions than under vertical bank conditions.With a low intake bottom elevation,a low withdrawal discharge,or a high main channel velocity,the sources of lateral withdrawal were in similar ranges near the local inclined bank in the vertical direction.Under inclined slope conditions,sediment deposition near the intake entrance could be reduced,compared to that under vertical slope conditions.The results provide hydrodynamic and sediment references for engineering designs for natural rivers with inclined terrains.展开更多
In recent years,the mining depth of steeply inclined coal seams in the Urumqi mining area has gradually increased.Local deformation of mining coal-rock results in frequent rockbursts.This has become a critical issue t...In recent years,the mining depth of steeply inclined coal seams in the Urumqi mining area has gradually increased.Local deformation of mining coal-rock results in frequent rockbursts.This has become a critical issue that affects the safe mining of deep,steeply inclined coal seams.In this work,we adopt a perspective centered on localized deformation in coal-rock mining and systematically combine theoretical analyses and extensive data mining of voluminous microseismic data.We describe a mechanical model for the urgently inclined mining of both the sandwiched rock pillar and the roof,explaining the mechanical response behavior of key disaster-prone zones within the deep working face,affected by the dynamics of deep mining.By exploring the spatial correlation inherent in extensive microseismic data,we delineate the“time-space”response relationship that governs the dynamic failure of coal-rock during the progression of the sharply inclined working face.The results disclose that(1)the distinctive coal-rock occurrence structure characterized by a“sandwiched rock pillar-B6 roof”constitutes the origin of rockburst in the southern mining area of the Wudong Coal Mine,with both elements presenting different degrees of deformation localization with increasing mining depth.(2)As mining depth increases,the bending deformation and energy accumulation within the rock pillar and roof show nonlinear acceleration.The localized deformation of deep,steeply inclined coal-rock engenders the spatial superposition of squeezing and prying effects in both the strike and dip directions,increasing the energy distribution disparity and stress asymmetry of the“sandwiched rock pillar-B3+6 coal seam-B6 roof”configuration.This makes worse the propensity for frequent dynamic disasters in the working face.(3)The developed high-energy distortion zone“inner-outer”control technology effectively reduces high stress concentration and energy distortion in the surrounding rock.After implementation,the average apparent resistivity in the rock pillar and B6 roof substantially increased by 430%and 300%,respectively,thus guaranteeing the safe and efficient development of steeply inclined coal seams.展开更多
This research presents the results of a comprehensive study of mineralogical and geochemical features of REE distribution in coals of Central Kazakhstan deposits—Karaganda coal basin and Shubarkol deposit,which have ...This research presents the results of a comprehensive study of mineralogical and geochemical features of REE distribution in coals of Central Kazakhstan deposits—Karaganda coal basin and Shubarkol deposit,which have large hard coal reserves and are industrially important for the coal industry of Kazakhstan;the research is based on 205 samples of clayey interlayers and coal seams.It shows basic patterns of distribution and features of concentration for impurity elements,gives an estimate of the impurity elements concentration,including REE,defines conditions and factors of their accumulation,and studies features of their forms in coal and coal-bearing rocks,which allows estimating the mechanisms of their migration and conditions of accumulation.According to the results of geochemical indicators,the article establishes the factors of REE dislocation,reveals the composition of margin rocks that have influenced REE concentration in coal seams,and the presented latest data on mineralogy allowed to establish the ways of their transportation to the paleobasin during the synand epigenetic periods of formation of the coal deposits of Central Kazakhstan being researched.It was found that the coals are insignificantly enriched with heavy lanthanides from Ho to Lu.The distribution curves of UCC normalized REE values in the coals are similar and coincide,but they are less than the average value for world coal,and amount to only one-third of the UCC.It was found that the highest concentrations of all REE are characteristic of clayey interlayers and oxidized coals.The La/Yb ratio in this case increases upwards along the section,indicating mainly clastogenic mechanism of REE delivery to the coals.In coal and clay samples,the predominant mineral form of REE is light lanthanide phosphates.Identified particles of REE from minerals and their composition peculiarities suppose autigene nature of their formation.The formation of the bulk of autigene minerals occurred during the maturation of brown coals and their transformation into hard ones.展开更多
The Xingluokeng deposit is the largest gran-ite-related tungsten deposit within the Wuyi metallogenic belt in South China.The Xingluokeng intrusion primarily consists of porphyritic biotite granite,biotite granite,and...The Xingluokeng deposit is the largest gran-ite-related tungsten deposit within the Wuyi metallogenic belt in South China.The Xingluokeng intrusion primarily consists of porphyritic biotite granite,biotite granite,andfine-grained granite.The deposit is represented by veinlet-disseminated mineralization with K-feldspathization and biotitization,alongside quartz-vein mineralization with gre-isenization and sericitization.This study investigates in-situ analyses of quartz compositions from both the intrusion and hydrothermal veinlets and veins.Trace element correlations indicate that trivalent Al^(3+)and Fe^(3+)replace Si^(4+)within the quartz lattice,with monovalent cations(such as Li^(+),Na^(+),and K^(+))primarily serving as charge compensators.Low Ge/Al ratios(<0.013)of quartz from granites suggest a mag-matic origin.The low Al/Ti and Ge/Ti ratios,accompanied by high Ti contents in quartz,suggest that the porphyritic biotite granite and biotite granite are characterized by rela-tively low levels of differentiation and high crystallization temperatures.In contrast,thefine-grained granite exhibits a higher degree of fractionation,lower crystallization tem-peratures,and a closer association with tungsten miner-alization.Ti contents in quartz from quartz veins indicate Qz-Ⅰformed at temperatures above 400°C,while Qz-Ⅱto Qz-Ⅴformed at temperatures below 350°C.Variations in different generations of quartz,as indicated by Al content and(Al+Fe)/(Li+Na+K)ratio,suggest that Qz-Ⅰprecipi-tated from a less acidicfluid with a stable pH,whereas Qz-Ⅱto Qz-Ⅴoriginated from a more acidicfluid with notable pH variations.Consequently,alkaline alteration and acidic alteration supplied the essential Ca and Fe for the precipita-tion of scheelite and wolframite,respectively,highlighting a critical mechanism in tungsten mineralization at the Xin-gluokeng deposit.展开更多
The Nigerian oil sands represent the largest oil sand deposit in Africa, yet there is little published information on the distribution and potential health and ecological risks of trace elements in the oil resource. I...The Nigerian oil sands represent the largest oil sand deposit in Africa, yet there is little published information on the distribution and potential health and ecological risks of trace elements in the oil resource. In the present study, we investigated the distribution pattern of 18trace elements(including biophile and chalcophile elements) as well as the estimated risks associated with exposure to these elements. The results of the study indicated that Fe was the most abundant element, with a mean concentration of 22,131 mg/kg while Br had the lowest mean concentration of 48 mg/kg. The high occurrence of Fe and Ti suggested a possible occurrence of ilmenite(Fe TiO_(3)) in the oil sands. Source apportionment using positive matrix factorization showed that the possible sources of detected elements in the oil sands were geogenic, metal production, and crustal. The contamination factor, geo-accumulation index, modified degree of contamination, pollution load index, and Nemerow pollution index indicated that the oil sands are heavily polluted by the elements. Health risk assessment showed that children were relatively more susceptible to the potentially toxic elements in the oil sands principally via ingestion exposure route(HQ > 1E-04). Cancer risks from inhalation are unlikely due to CR < 1E-06 but ingestion and dermal contact pose severe risks(CR > 1E-04). The high concentrations of the elements pose serious threats due to the potential for atmospheric transport, bioaccessibility, and bioavailability.展开更多
This study was focused to assess major and trace elements in bauxitic duricrusts from Ngaoundal and its surroundings in order to establish their mining interest. To this end, fieldworks, mineralogical and geochemical ...This study was focused to assess major and trace elements in bauxitic duricrusts from Ngaoundal and its surroundings in order to establish their mining interest. To this end, fieldworks, mineralogical and geochemical analyses were carried out. Four facies of duricrust were identified and characterized from the summit to the top of the slope of the Ngaoundal mountain: scoriaceous, pisolitic, nodular and massive. Mineralogical and geochemical analyses performed on 16 samples, revealed a significant concentration of Al<sub>2</sub>O<sub>3</sub> mainly in the scoriaceous facies (over 45% in grade), moderate in Fe<sub>2</sub>O<sub>3</sub> (averaging 23.69%) and SiO<sub>2</sub> (averaging 21.7%). Trace elements were generally low, excluding Cr (421 ppm on average), Zr (327 ppm on average and V (213 ppm on average). In addition, the limited quantities of alkalis (Na<sub>2</sub>O, K<sub>2</sub>O) and alkaline earths metals (MgO, CaO) coupled with the very high values of Chemical Index of Alteration (CIA) and Mineralogical Index of Alteration (MIA), (more than 99%) attest to the intense weathering of the studied materials. Allitization and monosiallitization constituted the crystallochemical phenomena that have led to the development of bauxitic minerals. More than 90% of gibbsite in scoriaceous facies, 52.21% - 76.01% of kaolinite in pisolitic facies and more than 40% of hematite in nodular facies were quantified. The relationships between the constitutive components indicated their interdependency during the bauxitization phenomenon. The mineralogical and geochemical properties highlighted the mining interest of the studied duricrusts to be valorized.展开更多
This study explains the entropy process of natural convective heating in the nanofluid-saturated cavity in a heated fin andmagnetic field.The temperature is constant on the Y-shaped fin,insulating the topwall while th...This study explains the entropy process of natural convective heating in the nanofluid-saturated cavity in a heated fin andmagnetic field.The temperature is constant on the Y-shaped fin,insulating the topwall while the remaining walls remain cold.All walls are subject to impermeability and non-slip conditions.The mathematical modeling of the problem is demonstrated by the continuity,momentum,and energy equations incorporating the inclined magnetic field.For elucidating the flow characteristics Finite ElementMethod(FEM)is implemented using stable FE pair.A hybrid fine mesh is used for discretizing the domain.Velocity and thermal plots concerning parameters are drawn.In addition,a detailed discussion regarding generation energy by monitoring changes in magnetic,viscous,total,and thermal irreversibility is provided.In addition,line graphs are created for the u and v components of the velocity profile to predict the flow behavior.Current simulations assume the dimensionless representative of magnetic field Hartmann number Ha between 0 and 100 and a magnetic field inclination between 0 and 90 degrees.A constant 4% volume proportion of nanoparticles is employed throughout all scenarios.展开更多
Regulatory sequences and transposable elements(TEs)account for a large proportion of the genomic sequences of species;however,their roles in gene transcription,especially tissue-specific expression,remain largely unkn...Regulatory sequences and transposable elements(TEs)account for a large proportion of the genomic sequences of species;however,their roles in gene transcription,especially tissue-specific expression,remain largely unknown.Pigs serve as an excellent animal model for studying genomic sequence biology due to the extensive diversity among their wild and domesticated populations.Here,we conducted an integrated analysis using H3K27ac ChIP-seq,H3K4me3 ChIP-seq,and RNA-seq data from 10 different tissues of seven fetuses and eight closely related adult pigs.We aimed to annotate the regulatory elements and TEs to elucidate their associations with histone modifications and mRNA expression across different tissues and developmental stages.Based on correlation analysis between mRNA expression and H3K27ac and H3K4me3 peak activity,results indicated that H3K27ac exhibited stronger associations with gene expression than H3K4me3.Furthermore,1.45%of TEs overlapped with either the H3K27ac or H3K4me3 peaks,with the majority displaying tissue-specific activity.Notably,a TE subfamily(LTR4C_SS),containing binding motifs for SIX1 and SIX4,showed specific enrichment in the H3K27ac peaks of the adult and fetal ovaries.RNA-seq analysis also revealed widespread expression of TEs in the exons or promoters of genes,including 4688 TE-containing transcripts with distinct development stage-specific and tissue-specific expression.Of note,1967 TE-containing transcripts were enriched in the testes.We identified a long terminal repeat(LTR),MLT1F1,acting as a testis-specific alternative promoter in SRPK2(a cell cycle-related protein kinase)in our pig dataset.This element was also conserved in humans and mice,suggesting either an ancient integration of TEs in genes specifically expressed in the testes or parallel evolutionary patterns.Collectively,our findings demonstrate that TEs are deeply embedded in the genome and exhibit important tissue-specific biological functions,particularly in the reproductive organs.展开更多
A well-known hazardous metal and top contaminant in wastewater is hexavalent chromium. The two forms of most commonly found chromium are chromate ( CrO 4 2− ) and dichromate ( Cr 2 O 7 2− ). Leather tanning, cooling t...A well-known hazardous metal and top contaminant in wastewater is hexavalent chromium. The two forms of most commonly found chromium are chromate ( CrO 4 2− ) and dichromate ( Cr 2 O 7 2− ). Leather tanning, cooling tower blow-down, plating, electroplating, rinse water sources, anodizing baths etc. are the main sources of Cr (VI) contamination. The Cr (VI) is not only non-biodegradable in the environment but also carcinogenic to living population. It is still difficult to treat Cr contaminated waste water effectively, safely, eco-friendly, and economically. As a result, many techniques have been used to treat Cr (VI)-polluted wastewater, including adsorption, chemical precipitation, coagulation, ion-exchange, and filtration. Among these practices, the most practical method is adsorption for the removal of Cr (VI) from aqueous solutions, which has gained widespread acceptance due to the ease of use and affordability of the equipment and adsorbent. It has been revealed that Fe-based adsorbents’ oxides and hydroxides have high adsorptive potential to lower Cr (VI) content below the advised threshold. Fe-based adsorbents were also discovered to be relatively cheap and toxic-free in Cr (VI) treatment. Fe-based adsorbents are commonly utilized in industry. It has been discovered that nanoparticles of Fe-, Ti-, and Cu-based adsorbents have a better capacity to remove Cr (VI). Cr (VI) was effectively removed from contaminated water using mixed element-based adsorbents (Fe-Mn, Fe-Ti, Fe-Cu, Fe-Zr, Fe-Cu-Y, Fe-Mg, etc.). Initial findings suggest that Cr (VI) removal from wastewater may be accomplished by using magnesium ferrite nanomaterials as an efficient adsorbent.展开更多
The small muddy areas developed in the southern Shandong Peninsula have attracted increasing attention from researchers because of complex changes in sediment sources driven by sea-level fluctuations and land-sea inte...The small muddy areas developed in the southern Shandong Peninsula have attracted increasing attention from researchers because of complex changes in sediment sources driven by sea-level fluctuations and land-sea interactions since the late Pleistocene.This study investigates the evolution of sediment sources and their responses to environmental changes since the late Pleistocene,using core WHZK01 collected from the nearshore muddy area in southern Weihai for rare earth element(REE)analysis.In doing so,this work highlights the changing patterns of material sources and the primary control factors.The results reveal that the sedimentary deposits in core WHZK01 exhibit distinct terrestrial characteristics.Discriminant function analysis(F_(D))and source discrimination dia-grams both suggest that the primary sources of these deposits are the Yellow River and adjacent small and medium-sized rivers,although the sources vary among different sedimentary units.Furthermore,the DU3 layer(17.82-25.10 m)displays typical riverine sedimentation,dominated by terrestrial detrital input,primarily from the local rivers,namely the Huanglei and Muzhu Rivers.The material in the DU2 layer(14.91-17.82 m)is mainly influenced by a mixture of the Qinglong and Yellow Rivers.The DU1 layer(0-14.91 m)is influenced by sea-level changes during the Holocene,with the Yellow River being the primary source,although there is also some input from local rivers.The changes in sea level during the Holocene and the input of Yellow River material carried by the coastal currents of the Yellow Sea are identified as the main controlling factors for the changes in material sources in the study area since the late Pleistocene,with small and mediumsized rivers also exerting some influence on the material sources.The above mentioned findings not only contribute to a better understanding of the source-sink systems of the Yellow River and adjacent small and mediumsized rivers but also deepen our understanding of the late Quaternary land-sea interactions in the Shandong Peninsula.展开更多
In the petrochemical industry process, the relative volatility between the components to be separated is close to one or the azeotrope that systems are difficult to separate. Liquid-liquid extraction is a common and e...In the petrochemical industry process, the relative volatility between the components to be separated is close to one or the azeotrope that systems are difficult to separate. Liquid-liquid extraction is a common and effective separation method, and selecting an extraction agent is the key to extraction technology research. In this paper, a design method of extractants based on elements and chemical bonds was proposed. A knowledge-based molecular design method was adopted to pre-select elements and chemical bond groups. The molecules were automatically synthesized according to specific combination rules to avoid the problem of “combination explosion” of molecules. The target properties of the extractant were set, and the extractant meeting the requirements was selected by predicting the correlation physical properties of the generated molecules. Based on the separation performance of the extractant in liquid-liquid extraction and the relative importance of each index, the fuzzy comprehensive evaluation membership function was established, the analytic hierarchy process determined the mass ratio of each index, and the consistency test results were passed. The results of case study based on quantum chemical analysis demonstrated that effective determination of extractants for the analysis of benzene-cyclohexane systems. The results unanimously prove that the method has important theoretical significance and application value.展开更多
基金supported by the National Natural Science Foundation of China, No.61932008Natural Science Foundation of Shanghai, No.21ZR1403200 (both to JC)。
文摘Neurodegenerative diseases cause great medical and economic burdens for both patients and society;however, the complex molecular mechanisms thereof are not yet well understood. With the development of high-coverage sequencing technology, researchers have started to notice that genomic repeat regions, previously neglected in search of disease culprits, are active contributors to multiple neurodegenerative diseases. In this review, we describe the association between repeat element variants and multiple degenerative diseases through genome-wide association studies and targeted sequencing. We discuss the identification of disease-relevant repeat element variants, further powered by the advancement of long-read sequencing technologies and their related tools, and summarize recent findings in the molecular mechanisms of repeat element variants in brain degeneration, such as those causing transcriptional silencing or RNA-mediated gain of toxic function. Furthermore, we describe how in silico predictions using innovative computational models, such as deep learning language models, could enhance and accelerate our understanding of the functional impact of repeat element variants. Finally, we discuss future directions to advance current findings for a better understanding of neurodegenerative diseases and the clinical applications of genomic repeat elements.
文摘The influence of variable viscosity and double diffusion on the convective stability of a nanofluid flow in an inclined porous channel is investigated.The DarcyBrinkman model is used to characterize the fluid flow dynamics in porous materials.The analytical solutions are obtained for the unidirectional and completely developed flow.Based on a normal mode analysis,the generalized eigenvalue problem under a perturbed state is solved.The eigenvalue problem is then solved by the spectral method.Finally,the critical Rayleigh number with the corresponding wavenumber is evaluated at the assigned values of the other flow-governing parameters.The results show that increasing the Darcy number,the Lewis number,the Dufour parameter,or the Soret parameter increases the stability of the system,whereas increasing the inclination angle of the channel destabilizes the flow.Besides,the flow is the most unstable when the channel is vertically oriented.
基金supported by Centre for Development of Advanced Computing (CDAC), Pune。
文摘This paper deals with the bearing capacity determination of strip footing on a rock mass in hilly area by considering the influence of inclined and eccentric loading. Applying the generalized HoekBrown failure criterion, the failure behavior of the rock mass is modeled with the help of the power cone programming in the lower bound finite element limit analysis framework. Using bearing capacity factor(Ns), the change in bearing capacity of the strip footing due to the occurrence of eccentrically inclined loading is presented. The variations of the magnitude of Ns are obtained by examining the effects of the Hoek-Brown rock mass strength parameters(uniaxial compressive strength(sci), disturbance factor(D), rock parameter(mi), and Geological Strength Index(GSI)) in the presence of different magnitudes of eccentricity(e) and inclination angle(λ) with respect to the vertical plane, and presented as design charts. Both the inclined loading modes, i.e., inclination towards the center of strip footing(+λ) and inclination away from the center of strip footing(-λ), are adopted to perform the investigation. In addition, the correlation between the input parameters and the corresponding output is developed by utilizing the artificial neural network(ANN). Additionally, from sensitivity analysis, it is observed that inclination angle(λ) is the most sensitive parameter. For practicing engineers, the obtained design equation and design charts can be beneficial to understand the bearing capacity variation in the existence of eccentrically inclined loading in mountain areas.
基金financially supported by the National Key Research and Development Program of China(Grant No.2021YFC2901903)the Geological Comprehensive Research Project of China’s Metallurgical Geology Bureau(Grant No.[2022]CMGBDZYJ005),the National Natural Science Foundation of China(Grant No.42002097)the Geological Investigation Project(Grant Nos.DD20230031,DD20221690,DD20230049,DD20230337).
文摘The Nuri deposit is the only Cu-W-Mo polymetallic deposit with large-scale WO3 resources in the eastern section of the Gangdese metallogenic belt,Tibet,China.However,the genetic type of this deposit has been controversial since its discovery.Based on a study of the geological characteristics of the deposit,this study presents mineralization stages,focusing on the oxide stage and the quartz-sulfide stage where scheelite is mainly formed,referred to as Sch-A and Sch-B,respectively.Through LA-ICP-MS trace element and Sr isotope analyses,the origin,evolutionary process of the oreforming fluid and genesis of the ore deposit are investigated.Scanning Electron Microscope-Cathodoluminescence(SEMCL)observations reveal that Sch-A consists of three generations,with dark gray homogenous Sch-A1 being replaced by relatively lighter and homogeneous Sch-A2 and Sch-A3,with Sch-A2 displaying a gray CL image color with vague and uneven growth bands and Sch-A3 has a light gray CL image color with hardly any growth band.In contrast,Sch-B exhibits a‘core-rim’structure,with the core part(Sch-B1)being dark gray and displaying a uniform growth band,while the rim part(Sch-B2)is light gray and homogeneous.The normalized distribution pattern of rare earth elements in scheelite and Sr isotope data suggest that the early ore-forming fluid in the Nuri deposit originated from granodiorite porphyry and,later on,some country rock material was mixed in,due to strong water-rock interaction.Combining the O-H isotope data further indicates that the ore-forming fluid in the Nuri deposit originated from magmatic-hydrothermal sources,with contributions from metamorphic water caused by water-rock interaction during the mineralization process,as well as later meteoric water.The intense water-rock interaction likely played a crucial role in the precipitation of scheelite,leading to varying Eu anomalies in different generations of scheelite from the oxide stage to the quartz-sulfide stage,while also causing a gradual decrease in oxygen fugacity(fO2)and a slow rise in pH value.Additionally,the high Mo and low Sr contents in the scheelite are consistent with typical characteristics of magmatic-hydrothermal scheelite.Therefore,considering the geological features of the deposit,the geochemical characteristics of scheelite and the O-H isotope data published previously,it can be concluded that the genesis of the Nuri deposit belongs to porphyry-skarn deposit.
基金financially supported by the National Natural Science Foundation of China(Grant Nos.51809209 and 11702244)the Open Fund of Key Laboratory of Water-Sediment Sciences and Water Disaster Prevention of Hunan Province(Grant No.2021SS04).
文摘The scattering of normally incident water waves by two surface-piercing inclined perforated barriers in water with a uniform finite depth is investigated within the framework of linear water wave theory.Considering that thin barriers are zero-thickness,a novel numerical method involving the the coupling of the dual boundary element method(DBEM)with damping layers is applied.In order to effectively damp out the reflected waves,two damping layers,instead of pseudoboundaries are implemented near the two side boundaries of the computational domain.Thus,the modified linearized free surface boundary conditions are formulated and used for solving both the ordinary boundary integral equation as well as the hypersingular boundary integral equation for degenerate boundaries.The newly developed numerical method is validated against analytical methods using the matched eigenfunction expansion method for the special case of two vertical barriers or the inclined angle to the vertical being zero.The influence of the length of the two damping layers has been discussed.Moreover,these findings are also validated against previous results for several cases.After validation,the numerical results for the reflection coefficient,transmission coefficient and dissipation coefficient are obtained by varying the inclination angle and porosity-effect parameter.The effects of both the inclination angle and the porosity on the amplitudes of wave forces acting on both the front and rear barriers are also investigated.It is found that the effect of the inclination angle mainly shifts the location of the extremal values of the reflection and the transmission coefficients.Additionally,a moderate value of the porosity-parameter is quite effective at dissipating wave energy and mitigating the wave loads on dual barriers.
基金funded by the“Key Scientific Issues and Innovative Technology Research on Oil and Gas Resource Exploration in China Sea Risk Exploration Area”(Grant No.CCL2022RCPS2017XNN)from CNOOC Research Institute,Beijing.
文摘The organic matter(OM)enrichment mechanisms and depositional environment characteristics of lacustrine source rocks in the western Bozhong Sag,Bohai Bay Basin in Northeast China remain controversial.To address these issues,based on Rock-Eval pyrolysis,kerogen macerals,H/C and O/C ratios,GC-MS,major and trace elements,the Dongying Formation Member(Mbr)3(E_(3)d_(3)),the Shahejie Formation mbrs 1 and 2(E_(2)s_(1+2)),and the Shahejie Mbr 3(E_(2)s_(3))source rocks in the western Bozhong Sag were studied.The above methods were used to reveal their geochemical properties,OM origins and depositional environments,all of which indicate that E_(2)s_(1+2)and E_(2)s_(3)are excellent source rocks,and that E_(3)d_(3)is of the second good quality.E_(3)d_(3)source rocks were formed under a warm and humid climate,mainly belong to fluvial/delta facies,the E_(3)d_(3)sediments formed under weakly oxidizing and freshwater conditions.Comparatively,the depositional environments of E_(2)s_(1+2)source rocks were arid and cold climate,representing saline or freshwater lacustrine facies,and the sediments of E_(2)s_(1+2)belong to anoxic or suboxic settings with large evaporation and salinity.During the period of E_(2)s_(3),the climate became warm and humid,indicating the freshwater lacustrine facies,and E_(2)s_(3)was characterized by freshwater and abundant algae.Moreover,compared with other intervals,the OM origin of E_(3)d_(3)source rocks has noticeable terrestrial input.The OM origin of the E_(2)s_(1+2)and E_(2)s_(3)are mainly plankton and bacteria.Tectonic subsidence and climate change have affected the changes of the depositional environment in the western Bozhong Sag,thus controlling the distribution of the source rocks,the geochemical characteristics in the three intervals of lacustrine source rocks have distinct differences.Overall,these factors are effective to evaluate the paleoenvironmental characteristics of source rocks by biomarkers,major and trace elements.The established models may have positive implications for research of lacustrine source rocks in offshore areas with few drillings.
基金financial support from the Ministry of Science and Higher Education of the Russian Federation(Topic No.121031700169-1).
文摘In this paper,we study the onset and development of three-dimensional convection in a tilted porous layer saturated with a liquid.The layer is subjected to a gravitational field and a strictly vertical temperature gradient.Typically,problems of thermal convection in tilted porous media saturated with a liquid are studied by assuming constant different temperatures at the boundaries of the layer,which prevent these systems from supporting conductive(non-convective)states.The boundary conditions considered in the present work allow a conductive state and are representative of typical geological applications.In an earlier work,we carried out a linear stability analysis of the conductive state.It was shown that at any layer tilt angles,the most dangerous type of disturbances are longitudinal rolls.Moreover,a non-zero velocity component exists in z-direction.In the present work,threedimensional non-linear convection regimes are studied.The original three-dimensional problem is reduced to two-dimensional one with an analytical expression for the velocity z-component v_(z)=v_(z)(x,y).It is shown that the critical Rayleigh number values obtained through numerical solutions of the obtained 2D problem by a finite difference method for different layer inclination angles,are in a good agreement with those predicted by the linear theory.The number of convective rolls realized in nonlinear calculations also fits the linear theory predictions for a given cavity geometry.Calculations carried out at low supercriticalities show that a direct bifurcation takes place.With increasing supercriticality,no transitions to other convective regimes are detected.The situation studied in this problem can be observed in oil-bearing rock formations under the influence of a geothermal temperature gradient,where the ensuing fluid convection can affect the distribution of oil throughout the layer.
基金Sichuan Science and Technology Program under Grant No.2023NSFSC0894Major Project of the Science and Technology Research and Development Program of the Ministry of Railways of China under Grant No.Z2012-061。
文摘A shaking table test for a bridge foundation reinforced by anti-slide piles on a silty clay landslide model with an inclined interlayer was performed.The deformation characteristics of the bridge foundation piles and anti-slide piles were analyzed in different loading conditions.The dynamic response law of a silty clay landslide with an inclined interlayer was summarized.The spacing between the rear anti-slide piles and bridge foundation should be reasonably controlled according to the seismic fortification requirements,to avoid the two peaks in the forced deformation of the bridge foundation piles.The“blocking effect”of the bridge foundation piles reduced the deformation of the forward anti-slide piles.The stress-strain response of silty clay was intensified as the vibration wave field appeared on the slope.Since the vibration intensified,the thrust distribution of the landslide underwent a process of shifting from triangle to inverted trapezoid,the difference in the acceleration response between the bearing platform and silty clay landslide tended to decrease,and the spectrum amplitude near the natural vibration frequency increased.The rear anti-slide piles were able to slow down the shear deformation of the soil in front of the piles and avoid excessive acceleration response of the bridge foundation piles.
基金the National Natural Science Foundation of China(https://www.nsfc.gov.cn/,Project No.11972179)the Natural Science Foundation of Guangdong Province(http://gdstc.gd.gov.cn/,No.2020A1515010685)the Department of Education of Guangdong Province(http://edu.gd.gov.cn/,No.2020ZDZX2008).
文摘The boundary element method(BEM)is a popular method for solving acoustic wave propagation problems,especially those in exterior domains,owing to its ease in handling radiation conditions at infinity.However,BEM models must meet the requirement of 6–10 elements per wavelength,using the conventional constant,linear,or quadratic elements.Therefore,a large storage size of memory and long solution time are often needed in solving higher-frequency problems.In this work,we propose two new types of enriched elements based on conventional constant boundary elements to improve the computational efficiency of the 2D acoustic BEM.The first one uses a plane wave expansion,which can be used to model scattering problems.The second one uses a special plane wave expansion,which can be used tomodel radiation problems.Five examples are investigated to showthe advantages of the enriched elements.Compared with the conventional constant elements,the new enriched elements can deliver results with the same accuracy and in less computational time.This improvement in the computational efficiency is more evident at higher frequencies(with the nondimensional wave numbers exceeding 100).The paper concludes with the potential of our proposed enriched elements and plans for their further improvement.
基金supported by the National Natural Science Foundation of China(Grant No.52379061)the Natural Science Foundation of Jiangsu Province(Grant No.BK20230099)the Key Laboratory of Water Grid Project and Regulation of Ministry of Water Resources(Grant No.QTKS0034W23292).
文摘Lateral intakes are common in rivers.The pump effciency and sediment deposition are determined by the local hydrodynamic characteristics and mainstream division width.The hydraulic characteristics of lateral withdrawal from inclined river slopes at different intake elevations should be investigated.Meanwhile,the division width exhibits significant vertical non-uniformity at an inclined river slope,which should be clarified.Hence,a three-dimensional(3-D)hydrodynamic and particle-tracking model was developed with the Open Source Field Operation and Manipulation(Open FOAM),and the model was validated with physical model tests for 90°lateral withdrawal from an inclined side bank.The flow fields,withdrawal sources,and division widths were investigated with different intake bottom elevations,withdrawal discharges,and main channel velocities.This study showed that under inclined side bank conditions,water entered the intake at an oblique angle,causing significant 3-D spiral flows in the intake rather than two-dimensional closed recirculation.A lower withdrawal discharge,a lower bottom elevation of the intake,or a higher main channel velocity could further strengthen this phenomenon.The average division width and turbulent kinetic energy were smaller under inclined side bank conditions than under vertical bank conditions.With a low intake bottom elevation,a low withdrawal discharge,or a high main channel velocity,the sources of lateral withdrawal were in similar ranges near the local inclined bank in the vertical direction.Under inclined slope conditions,sediment deposition near the intake entrance could be reduced,compared to that under vertical slope conditions.The results provide hydrodynamic and sediment references for engineering designs for natural rivers with inclined terrains.
基金financially supported by the Major Program of the National Natural Science Foundation of China(No.52394191)the Outstanding Ph.D Dissertation Cultivating Program of Xi’an University of Science and Technology(No.PY22001)the National Foundation for studying abroad(No.[2022]87)。
文摘In recent years,the mining depth of steeply inclined coal seams in the Urumqi mining area has gradually increased.Local deformation of mining coal-rock results in frequent rockbursts.This has become a critical issue that affects the safe mining of deep,steeply inclined coal seams.In this work,we adopt a perspective centered on localized deformation in coal-rock mining and systematically combine theoretical analyses and extensive data mining of voluminous microseismic data.We describe a mechanical model for the urgently inclined mining of both the sandwiched rock pillar and the roof,explaining the mechanical response behavior of key disaster-prone zones within the deep working face,affected by the dynamics of deep mining.By exploring the spatial correlation inherent in extensive microseismic data,we delineate the“time-space”response relationship that governs the dynamic failure of coal-rock during the progression of the sharply inclined working face.The results disclose that(1)the distinctive coal-rock occurrence structure characterized by a“sandwiched rock pillar-B6 roof”constitutes the origin of rockburst in the southern mining area of the Wudong Coal Mine,with both elements presenting different degrees of deformation localization with increasing mining depth.(2)As mining depth increases,the bending deformation and energy accumulation within the rock pillar and roof show nonlinear acceleration.The localized deformation of deep,steeply inclined coal-rock engenders the spatial superposition of squeezing and prying effects in both the strike and dip directions,increasing the energy distribution disparity and stress asymmetry of the“sandwiched rock pillar-B3+6 coal seam-B6 roof”configuration.This makes worse the propensity for frequent dynamic disasters in the working face.(3)The developed high-energy distortion zone“inner-outer”control technology effectively reduces high stress concentration and energy distortion in the surrounding rock.After implementation,the average apparent resistivity in the rock pillar and B6 roof substantially increased by 430%and 300%,respectively,thus guaranteeing the safe and efficient development of steeply inclined coal seams.
基金funded by the Science Committee of the Ministry of Science and Higher Education of the Republic of Kazakhstan(Grant No.AP13067779)。
文摘This research presents the results of a comprehensive study of mineralogical and geochemical features of REE distribution in coals of Central Kazakhstan deposits—Karaganda coal basin and Shubarkol deposit,which have large hard coal reserves and are industrially important for the coal industry of Kazakhstan;the research is based on 205 samples of clayey interlayers and coal seams.It shows basic patterns of distribution and features of concentration for impurity elements,gives an estimate of the impurity elements concentration,including REE,defines conditions and factors of their accumulation,and studies features of their forms in coal and coal-bearing rocks,which allows estimating the mechanisms of their migration and conditions of accumulation.According to the results of geochemical indicators,the article establishes the factors of REE dislocation,reveals the composition of margin rocks that have influenced REE concentration in coal seams,and the presented latest data on mineralogy allowed to establish the ways of their transportation to the paleobasin during the synand epigenetic periods of formation of the coal deposits of Central Kazakhstan being researched.It was found that the coals are insignificantly enriched with heavy lanthanides from Ho to Lu.The distribution curves of UCC normalized REE values in the coals are similar and coincide,but they are less than the average value for world coal,and amount to only one-third of the UCC.It was found that the highest concentrations of all REE are characteristic of clayey interlayers and oxidized coals.The La/Yb ratio in this case increases upwards along the section,indicating mainly clastogenic mechanism of REE delivery to the coals.In coal and clay samples,the predominant mineral form of REE is light lanthanide phosphates.Identified particles of REE from minerals and their composition peculiarities suppose autigene nature of their formation.The formation of the bulk of autigene minerals occurred during the maturation of brown coals and their transformation into hard ones.
基金This study is financially supported by the National Science Fund for Distinguished Young Scholars(No.42025301)Guizhou Provincial 2020 Science and Technology Subsidies(No.GZ2020SIG).
文摘The Xingluokeng deposit is the largest gran-ite-related tungsten deposit within the Wuyi metallogenic belt in South China.The Xingluokeng intrusion primarily consists of porphyritic biotite granite,biotite granite,andfine-grained granite.The deposit is represented by veinlet-disseminated mineralization with K-feldspathization and biotitization,alongside quartz-vein mineralization with gre-isenization and sericitization.This study investigates in-situ analyses of quartz compositions from both the intrusion and hydrothermal veinlets and veins.Trace element correlations indicate that trivalent Al^(3+)and Fe^(3+)replace Si^(4+)within the quartz lattice,with monovalent cations(such as Li^(+),Na^(+),and K^(+))primarily serving as charge compensators.Low Ge/Al ratios(<0.013)of quartz from granites suggest a mag-matic origin.The low Al/Ti and Ge/Ti ratios,accompanied by high Ti contents in quartz,suggest that the porphyritic biotite granite and biotite granite are characterized by rela-tively low levels of differentiation and high crystallization temperatures.In contrast,thefine-grained granite exhibits a higher degree of fractionation,lower crystallization tem-peratures,and a closer association with tungsten miner-alization.Ti contents in quartz from quartz veins indicate Qz-Ⅰformed at temperatures above 400°C,while Qz-Ⅱto Qz-Ⅴformed at temperatures below 350°C.Variations in different generations of quartz,as indicated by Al content and(Al+Fe)/(Li+Na+K)ratio,suggest that Qz-Ⅰprecipi-tated from a less acidicfluid with a stable pH,whereas Qz-Ⅱto Qz-Ⅴoriginated from a more acidicfluid with notable pH variations.Consequently,alkaline alteration and acidic alteration supplied the essential Ca and Fe for the precipita-tion of scheelite and wolframite,respectively,highlighting a critical mechanism in tungsten mineralization at the Xin-gluokeng deposit.
文摘The Nigerian oil sands represent the largest oil sand deposit in Africa, yet there is little published information on the distribution and potential health and ecological risks of trace elements in the oil resource. In the present study, we investigated the distribution pattern of 18trace elements(including biophile and chalcophile elements) as well as the estimated risks associated with exposure to these elements. The results of the study indicated that Fe was the most abundant element, with a mean concentration of 22,131 mg/kg while Br had the lowest mean concentration of 48 mg/kg. The high occurrence of Fe and Ti suggested a possible occurrence of ilmenite(Fe TiO_(3)) in the oil sands. Source apportionment using positive matrix factorization showed that the possible sources of detected elements in the oil sands were geogenic, metal production, and crustal. The contamination factor, geo-accumulation index, modified degree of contamination, pollution load index, and Nemerow pollution index indicated that the oil sands are heavily polluted by the elements. Health risk assessment showed that children were relatively more susceptible to the potentially toxic elements in the oil sands principally via ingestion exposure route(HQ > 1E-04). Cancer risks from inhalation are unlikely due to CR < 1E-06 but ingestion and dermal contact pose severe risks(CR > 1E-04). The high concentrations of the elements pose serious threats due to the potential for atmospheric transport, bioaccessibility, and bioavailability.
文摘This study was focused to assess major and trace elements in bauxitic duricrusts from Ngaoundal and its surroundings in order to establish their mining interest. To this end, fieldworks, mineralogical and geochemical analyses were carried out. Four facies of duricrust were identified and characterized from the summit to the top of the slope of the Ngaoundal mountain: scoriaceous, pisolitic, nodular and massive. Mineralogical and geochemical analyses performed on 16 samples, revealed a significant concentration of Al<sub>2</sub>O<sub>3</sub> mainly in the scoriaceous facies (over 45% in grade), moderate in Fe<sub>2</sub>O<sub>3</sub> (averaging 23.69%) and SiO<sub>2</sub> (averaging 21.7%). Trace elements were generally low, excluding Cr (421 ppm on average), Zr (327 ppm on average and V (213 ppm on average). In addition, the limited quantities of alkalis (Na<sub>2</sub>O, K<sub>2</sub>O) and alkaline earths metals (MgO, CaO) coupled with the very high values of Chemical Index of Alteration (CIA) and Mineralogical Index of Alteration (MIA), (more than 99%) attest to the intense weathering of the studied materials. Allitization and monosiallitization constituted the crystallochemical phenomena that have led to the development of bauxitic minerals. More than 90% of gibbsite in scoriaceous facies, 52.21% - 76.01% of kaolinite in pisolitic facies and more than 40% of hematite in nodular facies were quantified. The relationships between the constitutive components indicated their interdependency during the bauxitization phenomenon. The mineralogical and geochemical properties highlighted the mining interest of the studied duricrusts to be valorized.
文摘This study explains the entropy process of natural convective heating in the nanofluid-saturated cavity in a heated fin andmagnetic field.The temperature is constant on the Y-shaped fin,insulating the topwall while the remaining walls remain cold.All walls are subject to impermeability and non-slip conditions.The mathematical modeling of the problem is demonstrated by the continuity,momentum,and energy equations incorporating the inclined magnetic field.For elucidating the flow characteristics Finite ElementMethod(FEM)is implemented using stable FE pair.A hybrid fine mesh is used for discretizing the domain.Velocity and thermal plots concerning parameters are drawn.In addition,a detailed discussion regarding generation energy by monitoring changes in magnetic,viscous,total,and thermal irreversibility is provided.In addition,line graphs are created for the u and v components of the velocity profile to predict the flow behavior.Current simulations assume the dimensionless representative of magnetic field Hartmann number Ha between 0 and 100 and a magnetic field inclination between 0 and 90 degrees.A constant 4% volume proportion of nanoparticles is employed throughout all scenarios.
基金supported by the National Natural Science Foundation of China(32160781)。
文摘Regulatory sequences and transposable elements(TEs)account for a large proportion of the genomic sequences of species;however,their roles in gene transcription,especially tissue-specific expression,remain largely unknown.Pigs serve as an excellent animal model for studying genomic sequence biology due to the extensive diversity among their wild and domesticated populations.Here,we conducted an integrated analysis using H3K27ac ChIP-seq,H3K4me3 ChIP-seq,and RNA-seq data from 10 different tissues of seven fetuses and eight closely related adult pigs.We aimed to annotate the regulatory elements and TEs to elucidate their associations with histone modifications and mRNA expression across different tissues and developmental stages.Based on correlation analysis between mRNA expression and H3K27ac and H3K4me3 peak activity,results indicated that H3K27ac exhibited stronger associations with gene expression than H3K4me3.Furthermore,1.45%of TEs overlapped with either the H3K27ac or H3K4me3 peaks,with the majority displaying tissue-specific activity.Notably,a TE subfamily(LTR4C_SS),containing binding motifs for SIX1 and SIX4,showed specific enrichment in the H3K27ac peaks of the adult and fetal ovaries.RNA-seq analysis also revealed widespread expression of TEs in the exons or promoters of genes,including 4688 TE-containing transcripts with distinct development stage-specific and tissue-specific expression.Of note,1967 TE-containing transcripts were enriched in the testes.We identified a long terminal repeat(LTR),MLT1F1,acting as a testis-specific alternative promoter in SRPK2(a cell cycle-related protein kinase)in our pig dataset.This element was also conserved in humans and mice,suggesting either an ancient integration of TEs in genes specifically expressed in the testes or parallel evolutionary patterns.Collectively,our findings demonstrate that TEs are deeply embedded in the genome and exhibit important tissue-specific biological functions,particularly in the reproductive organs.
文摘A well-known hazardous metal and top contaminant in wastewater is hexavalent chromium. The two forms of most commonly found chromium are chromate ( CrO 4 2− ) and dichromate ( Cr 2 O 7 2− ). Leather tanning, cooling tower blow-down, plating, electroplating, rinse water sources, anodizing baths etc. are the main sources of Cr (VI) contamination. The Cr (VI) is not only non-biodegradable in the environment but also carcinogenic to living population. It is still difficult to treat Cr contaminated waste water effectively, safely, eco-friendly, and economically. As a result, many techniques have been used to treat Cr (VI)-polluted wastewater, including adsorption, chemical precipitation, coagulation, ion-exchange, and filtration. Among these practices, the most practical method is adsorption for the removal of Cr (VI) from aqueous solutions, which has gained widespread acceptance due to the ease of use and affordability of the equipment and adsorbent. It has been revealed that Fe-based adsorbents’ oxides and hydroxides have high adsorptive potential to lower Cr (VI) content below the advised threshold. Fe-based adsorbents were also discovered to be relatively cheap and toxic-free in Cr (VI) treatment. Fe-based adsorbents are commonly utilized in industry. It has been discovered that nanoparticles of Fe-, Ti-, and Cu-based adsorbents have a better capacity to remove Cr (VI). Cr (VI) was effectively removed from contaminated water using mixed element-based adsorbents (Fe-Mn, Fe-Ti, Fe-Cu, Fe-Zr, Fe-Cu-Y, Fe-Mg, etc.). Initial findings suggest that Cr (VI) removal from wastewater may be accomplished by using magnesium ferrite nanomaterials as an efficient adsorbent.
基金supported by the Natural Science Foundation of Shandong Province(No.ZR2022MD114)the Project of Global Earth Observation on Asian Delta and Estuary Corresponding to Anthropogenic Impacts and Climate Changes(No.2019YFE0127200).
文摘The small muddy areas developed in the southern Shandong Peninsula have attracted increasing attention from researchers because of complex changes in sediment sources driven by sea-level fluctuations and land-sea interactions since the late Pleistocene.This study investigates the evolution of sediment sources and their responses to environmental changes since the late Pleistocene,using core WHZK01 collected from the nearshore muddy area in southern Weihai for rare earth element(REE)analysis.In doing so,this work highlights the changing patterns of material sources and the primary control factors.The results reveal that the sedimentary deposits in core WHZK01 exhibit distinct terrestrial characteristics.Discriminant function analysis(F_(D))and source discrimination dia-grams both suggest that the primary sources of these deposits are the Yellow River and adjacent small and medium-sized rivers,although the sources vary among different sedimentary units.Furthermore,the DU3 layer(17.82-25.10 m)displays typical riverine sedimentation,dominated by terrestrial detrital input,primarily from the local rivers,namely the Huanglei and Muzhu Rivers.The material in the DU2 layer(14.91-17.82 m)is mainly influenced by a mixture of the Qinglong and Yellow Rivers.The DU1 layer(0-14.91 m)is influenced by sea-level changes during the Holocene,with the Yellow River being the primary source,although there is also some input from local rivers.The changes in sea level during the Holocene and the input of Yellow River material carried by the coastal currents of the Yellow Sea are identified as the main controlling factors for the changes in material sources in the study area since the late Pleistocene,with small and mediumsized rivers also exerting some influence on the material sources.The above mentioned findings not only contribute to a better understanding of the source-sink systems of the Yellow River and adjacent small and mediumsized rivers but also deepen our understanding of the late Quaternary land-sea interactions in the Shandong Peninsula.
基金supported by the National Natural Science Foundation of China(22178190).
文摘In the petrochemical industry process, the relative volatility between the components to be separated is close to one or the azeotrope that systems are difficult to separate. Liquid-liquid extraction is a common and effective separation method, and selecting an extraction agent is the key to extraction technology research. In this paper, a design method of extractants based on elements and chemical bonds was proposed. A knowledge-based molecular design method was adopted to pre-select elements and chemical bond groups. The molecules were automatically synthesized according to specific combination rules to avoid the problem of “combination explosion” of molecules. The target properties of the extractant were set, and the extractant meeting the requirements was selected by predicting the correlation physical properties of the generated molecules. Based on the separation performance of the extractant in liquid-liquid extraction and the relative importance of each index, the fuzzy comprehensive evaluation membership function was established, the analytic hierarchy process determined the mass ratio of each index, and the consistency test results were passed. The results of case study based on quantum chemical analysis demonstrated that effective determination of extractants for the analysis of benzene-cyclohexane systems. The results unanimously prove that the method has important theoretical significance and application value.