Added mass and damping coefficients are very important in hydrodynamic analysis of naval structures. In this paper,a double submerged inclined plates with ‘/\’ configuration is firstly considered. By use of the boun...Added mass and damping coefficients are very important in hydrodynamic analysis of naval structures. In this paper,a double submerged inclined plates with ‘/\’ configuration is firstly considered. By use of the boundary element method(BEM) based on Green function with the wave term, the radiation problem of this special type structure is investigated. The added mass and damping coefficients due to different plate lengths and inclined angles are obtained. The results show that: the added mass and damping coefficients for sway are the largest. Heave is the most sensitive mode to inclined angles. The wave frequencies of the maximal added mass and damping coefficients for sway and roll are the same.展开更多
The present numerically study investigates the influence of the Hall current and constant heat flux on the Magneto hydrodynamic (MHD) natural convection boundary layer viscous incompressible fluid flow in the manifest...The present numerically study investigates the influence of the Hall current and constant heat flux on the Magneto hydrodynamic (MHD) natural convection boundary layer viscous incompressible fluid flow in the manifestation of transverse magnetic field near an inclined vertical permeable flat plate. It is assumed that the induced magnetic field is negligible compared with the imposed magnetic field. The governing boundary layer equations have been transferred into non-similar model by implementing similarity approaches. The physical dimensionless parameter has been set up into the model as Prandtl number, Eckert number, Magnetic parameter, Schmidt number, local Grashof number and local modified Grashof number. The numerical method of Nactsheim-Swigert shooting iteration technique together with Runge-Kutta six order iteration scheme has been used to solve the system of governing non-similar equations. The physical effects of the various parameters on dimensionless primary velocity profile, secondary velocity profile, and temperature and concentration profile are discussed graphically. Moreover, the local skin friction coefficient, the local Nusselt number and Sherwood number are shown in tabular form for various values of the parameters.展开更多
A numerical investigation of boundary layer mass transfer flow through an inclined plate with the effect of chemical reaction and thermal diffusion is presented in this study. The governing partial differential equati...A numerical investigation of boundary layer mass transfer flow through an inclined plate with the effect of chemical reaction and thermal diffusion is presented in this study. The governing partial differential equations (PDE) are transformed to a system of dimensionless non-similar coupled PDEs. The transformed, non-similar conservations equations (momentum balance equation, energy balance equation and concentration balance equation) are then solved using a numerical approach known as explicit finite difference method (EFDM). Basically EFDM introduced for the unsteadiness in the momentum, temperature, and concentration fluid fields is based on the time dependent fluid velocity, temperature and concentration of the boundary surface. During the course of discussion, it is found that the various parameters related to the problem influence the calculated resultant expressions. The computed numerical solution results for the velocity, temperature, and concentration distribution with the effect of various important dimensionless parameters (Grashof number, Modified Grashof number, Prandtl number, Schmidt number, Soret number, Dufour number, chemical reaction parameter and inclination parameter) entering into the problems are critically analyzed and discussed graphically. It can be seen that two physical phenomena chemical reaction and thermal diffusion can greatly effect on the boundary layer fluid flows through an inclined plate.展开更多
The fluid flow characteristics of the single bunch inclined jet impingement were investigated with different jet flow velocities,nozzle diameters,jet angles and jet-to-target distances for ultra-fast cooling technolog...The fluid flow characteristics of the single bunch inclined jet impingement were investigated with different jet flow velocities,nozzle diameters,jet angles and jet-to-target distances for ultra-fast cooling technology.The results show that the peak pressure varying significantly from nearly 0.5 to above 13.4 kPa locates at the stagnation point with different jet diameters,and the radius of impact pressure affected zone is small promoted from 46 to 81 mm in transverse direction,and 50 to 91 mm in longitude direction when the jet flow velocity changes from 5 to 20 m/s.However,the fluid flow velocity is relatively smaller near the stagnation point,and increases gradually along the radius outwards,then declines.There is an obvious anisotropic characteristic that the flow velocity component along the jet direction is about twice of the contrary one where the jet anlge is 60°,jet diameter is 5 mm,jet length is 8 mm and jet height is 50 mm.展开更多
An analysis is performed to study thermo-diffusion and diffusion-thermo effects on mixed convection heat and mass transfer boundary layer flow along an inclined (solar collector) plate. The resulting governing equatio...An analysis is performed to study thermo-diffusion and diffusion-thermo effects on mixed convection heat and mass transfer boundary layer flow along an inclined (solar collector) plate. The resulting governing equations are transformed and then solved numerically using the local nonsimilarity method and Runge-Kutta shooting quadrature. A parametric study illustrating the influence of thermal buoyancy parameter (ζ), Prandtl number (Pr), Schmidt number (Sc), Soret number (Sr), Dufour number (Du) and concentration-to- thermal-buoyancy ratio parameter, N, on the fluid velocity, temperature and concentration profiles as well as on local skin-friction, Nusselt and Sherwood numbers is conducted. For positive inclination angle of the plate (γ = 70 degrees), flow velocity (f') is strongly increased i.e. accelerated, with thermal buoyancy force parameter (ζ), in particular closer to the plate surface;further into the boundary layer, ζ has a much reduced effect. Conversely temperature (θ) and concentration (ψ) is decreased with increasing thermal buoyancy parameter, ζ. For negative plate inclination, the flow is accelerated whereas for positive inclination it is decelerated i.e. velocity is reduced. Conversely with negative plate inclination both the temperature and concentration in the boundary layer is reduced with the opposite apparent for positive inclination. Increasing Prandtl number strongly reduces temperature in the regime whereas an increase in Schmidt number boosts temperatures with temperature overshoots near the plate surface for Sc = 3 and 5 (i.e. for Sc > 1). Concentration is reduced continuously throughout the boundary layer, however, with increasing Schmidt number. A positive increase in concentration-to-thermal-buoyancy ratio parameter, N, significantly accelerates the flow in the domain, whereas negative N causes a deceleration. A velocity overshoot is also identified for N = 20, at intermediate distance from the plate surface. Negative N (thermal and concentration buoyancy forces oppose each other) induces a slight increase in both fluid temperature and concentration, with the reverse observed for positive N (thermal and concentration buoyancy forces assisting each other). Increasing Dufour number respectively causes a rise in temperature and a decrease in concentration, whereas an increase in Soret number cools the fluid i.e. reduces temperature and enhances concentration values. In the absence of Soret and Dufour effects, positive N causes a monotonic increase in local Nusselt number, NuxRex-1/2 with ζ Cos γ, for N = -1 the local Nusselt number remains constant for all values of parameter, ζ Cos γ. Local Sherwood number, ShxRex-1/2 is boosted considerably with higher Schmidt numbers and also with positive N values. The computations in the absence of Soret and Dufour effects correlate accurately with the earlier study by Chen et al. (1980).展开更多
This study is devoted to the investigation of thermal criticality for a reactive gravity driven thin film flow of a third-grade fluid with adiabatic free surface down an inclined isothermal plane. It is assumed that t...This study is devoted to the investigation of thermal criticality for a reactive gravity driven thin film flow of a third-grade fluid with adiabatic free surface down an inclined isothermal plane. It is assumed that the reaction is exothermic under Arrhenius kinetics, neglecting the consumption of the material. The governing non-linear equations for conservation of momentum and energy are obtained and solved by using a new computational approach based on a special type of Hermite-Padé approximation technique implemented in MAPLE. This semi-numerical scheme offers some advantages over solutions obtained with traditional methods such as finite differences, spectral method, and shooting method. It reveals the analytical structure of the solution function. Important properties of overall flow structure including velocity field, temperature field, thermal criticality, and bifurcations are discussed.展开更多
The preparation of semisolid slurry of A356 aluminum alloy using an oblique plate was investigated. A356 alloy melt undergoes partial solidification when it flows down on an oblique plate cooled from underneath by cou...The preparation of semisolid slurry of A356 aluminum alloy using an oblique plate was investigated. A356 alloy melt undergoes partial solidification when it flows down on an oblique plate cooled from underneath by counter flowing water. It results in continuous formation of columnar dendrites on plate wall. Due to forced convection, these dendrites are sheared off into equiaxed/fragmented grains and then washed away continuously to produce semisolid slurry at plate exit. Melt pouring temperature provides required condition of solidification whereas plate inclination enables necessary shear for producing semisolid slurry of desired quality. Slurry obtained was solidified in metal mould to produce semisolid-cast billets of desired microstructure. Furthermore, semisolid-cast billets were heat treated to improve surface quality. Microstructures of both semisolid-cast and heat-treated billets were analyzed. Effects of melt pouring temperature and plate inclination on solidification and microstructure of billets produced using oblique plate were described. The investigations involved four different melt pouring temperatures (620, 625, 630 and 635 °C) associated with four different plate inclinations (30°, 45°, 60° and 75°). Melt pouring temperature of 625 °C with plate inclination of 60° shows fine and globular microstructures and it is the optimum.展开更多
In order to overcome the limitations of traditional microperforated plate with narrow sound absorption bandwidth and a single structure,two multi-cavity composite sound-absorbing materials were designed based on the s...In order to overcome the limitations of traditional microperforated plate with narrow sound absorption bandwidth and a single structure,two multi-cavity composite sound-absorbing materials were designed based on the shape of monoclinic crystals:uniaxial oblique structure(UOS)and biaxial oblique structure(BOS).Through finite element simulation and experimental research,the theoretical models of UOS and BOS were verified,and their sound absorption mechanisms were revealed.At the same time,the influence of multi-cavity composites on sound absorption performance was analyzed based on the theoretical model,and the influence of structural parameters on sound absorption performance was discussed.The research results show that,in the range of 100-2000 Hz,UOS has three sound absorption peaks and BOS has five sound absorption peaks.The frequency range of the half-absorption bandwidth(α>0.5)of UOS and BOS increases by 242% and 229%,respectively.Compared with traditional microperforated sound-absorbing structures,the series and parallel hybrid methods significantly increase the sound-absorbing bandwidth of the sound-absorbing structure.This research has guiding significance for noise control and has broad application prospects in the fields of transportation,construction,and mechanical design.展开更多
基金financially supported by the National Key Basic Research Program of China(Grant No.2013CB036101)the National Natural Science Foundation of China(Grant No.51379037)
文摘Added mass and damping coefficients are very important in hydrodynamic analysis of naval structures. In this paper,a double submerged inclined plates with ‘/\’ configuration is firstly considered. By use of the boundary element method(BEM) based on Green function with the wave term, the radiation problem of this special type structure is investigated. The added mass and damping coefficients due to different plate lengths and inclined angles are obtained. The results show that: the added mass and damping coefficients for sway are the largest. Heave is the most sensitive mode to inclined angles. The wave frequencies of the maximal added mass and damping coefficients for sway and roll are the same.
文摘The present numerically study investigates the influence of the Hall current and constant heat flux on the Magneto hydrodynamic (MHD) natural convection boundary layer viscous incompressible fluid flow in the manifestation of transverse magnetic field near an inclined vertical permeable flat plate. It is assumed that the induced magnetic field is negligible compared with the imposed magnetic field. The governing boundary layer equations have been transferred into non-similar model by implementing similarity approaches. The physical dimensionless parameter has been set up into the model as Prandtl number, Eckert number, Magnetic parameter, Schmidt number, local Grashof number and local modified Grashof number. The numerical method of Nactsheim-Swigert shooting iteration technique together with Runge-Kutta six order iteration scheme has been used to solve the system of governing non-similar equations. The physical effects of the various parameters on dimensionless primary velocity profile, secondary velocity profile, and temperature and concentration profile are discussed graphically. Moreover, the local skin friction coefficient, the local Nusselt number and Sherwood number are shown in tabular form for various values of the parameters.
文摘A numerical investigation of boundary layer mass transfer flow through an inclined plate with the effect of chemical reaction and thermal diffusion is presented in this study. The governing partial differential equations (PDE) are transformed to a system of dimensionless non-similar coupled PDEs. The transformed, non-similar conservations equations (momentum balance equation, energy balance equation and concentration balance equation) are then solved using a numerical approach known as explicit finite difference method (EFDM). Basically EFDM introduced for the unsteadiness in the momentum, temperature, and concentration fluid fields is based on the time dependent fluid velocity, temperature and concentration of the boundary surface. During the course of discussion, it is found that the various parameters related to the problem influence the calculated resultant expressions. The computed numerical solution results for the velocity, temperature, and concentration distribution with the effect of various important dimensionless parameters (Grashof number, Modified Grashof number, Prandtl number, Schmidt number, Soret number, Dufour number, chemical reaction parameter and inclination parameter) entering into the problems are critically analyzed and discussed graphically. It can be seen that two physical phenomena chemical reaction and thermal diffusion can greatly effect on the boundary layer fluid flows through an inclined plate.
基金Project(2010CB630800)supported by the National Basic Research Program of ChinaProject(N100307003)supported by the Fundamental Research Funds for the Central Universities,China
文摘The fluid flow characteristics of the single bunch inclined jet impingement were investigated with different jet flow velocities,nozzle diameters,jet angles and jet-to-target distances for ultra-fast cooling technology.The results show that the peak pressure varying significantly from nearly 0.5 to above 13.4 kPa locates at the stagnation point with different jet diameters,and the radius of impact pressure affected zone is small promoted from 46 to 81 mm in transverse direction,and 50 to 91 mm in longitude direction when the jet flow velocity changes from 5 to 20 m/s.However,the fluid flow velocity is relatively smaller near the stagnation point,and increases gradually along the radius outwards,then declines.There is an obvious anisotropic characteristic that the flow velocity component along the jet direction is about twice of the contrary one where the jet anlge is 60°,jet diameter is 5 mm,jet length is 8 mm and jet height is 50 mm.
文摘An analysis is performed to study thermo-diffusion and diffusion-thermo effects on mixed convection heat and mass transfer boundary layer flow along an inclined (solar collector) plate. The resulting governing equations are transformed and then solved numerically using the local nonsimilarity method and Runge-Kutta shooting quadrature. A parametric study illustrating the influence of thermal buoyancy parameter (ζ), Prandtl number (Pr), Schmidt number (Sc), Soret number (Sr), Dufour number (Du) and concentration-to- thermal-buoyancy ratio parameter, N, on the fluid velocity, temperature and concentration profiles as well as on local skin-friction, Nusselt and Sherwood numbers is conducted. For positive inclination angle of the plate (γ = 70 degrees), flow velocity (f') is strongly increased i.e. accelerated, with thermal buoyancy force parameter (ζ), in particular closer to the plate surface;further into the boundary layer, ζ has a much reduced effect. Conversely temperature (θ) and concentration (ψ) is decreased with increasing thermal buoyancy parameter, ζ. For negative plate inclination, the flow is accelerated whereas for positive inclination it is decelerated i.e. velocity is reduced. Conversely with negative plate inclination both the temperature and concentration in the boundary layer is reduced with the opposite apparent for positive inclination. Increasing Prandtl number strongly reduces temperature in the regime whereas an increase in Schmidt number boosts temperatures with temperature overshoots near the plate surface for Sc = 3 and 5 (i.e. for Sc > 1). Concentration is reduced continuously throughout the boundary layer, however, with increasing Schmidt number. A positive increase in concentration-to-thermal-buoyancy ratio parameter, N, significantly accelerates the flow in the domain, whereas negative N causes a deceleration. A velocity overshoot is also identified for N = 20, at intermediate distance from the plate surface. Negative N (thermal and concentration buoyancy forces oppose each other) induces a slight increase in both fluid temperature and concentration, with the reverse observed for positive N (thermal and concentration buoyancy forces assisting each other). Increasing Dufour number respectively causes a rise in temperature and a decrease in concentration, whereas an increase in Soret number cools the fluid i.e. reduces temperature and enhances concentration values. In the absence of Soret and Dufour effects, positive N causes a monotonic increase in local Nusselt number, NuxRex-1/2 with ζ Cos γ, for N = -1 the local Nusselt number remains constant for all values of parameter, ζ Cos γ. Local Sherwood number, ShxRex-1/2 is boosted considerably with higher Schmidt numbers and also with positive N values. The computations in the absence of Soret and Dufour effects correlate accurately with the earlier study by Chen et al. (1980).
基金supported by the National Research Foundation of South Africa Thuthuka Programme
文摘This study is devoted to the investigation of thermal criticality for a reactive gravity driven thin film flow of a third-grade fluid with adiabatic free surface down an inclined isothermal plane. It is assumed that the reaction is exothermic under Arrhenius kinetics, neglecting the consumption of the material. The governing non-linear equations for conservation of momentum and energy are obtained and solved by using a new computational approach based on a special type of Hermite-Padé approximation technique implemented in MAPLE. This semi-numerical scheme offers some advantages over solutions obtained with traditional methods such as finite differences, spectral method, and shooting method. It reveals the analytical structure of the solution function. Important properties of overall flow structure including velocity field, temperature field, thermal criticality, and bifurcations are discussed.
基金financial support received from Ministry of Mines, TIFAC, and Department of Science and Technology
文摘The preparation of semisolid slurry of A356 aluminum alloy using an oblique plate was investigated. A356 alloy melt undergoes partial solidification when it flows down on an oblique plate cooled from underneath by counter flowing water. It results in continuous formation of columnar dendrites on plate wall. Due to forced convection, these dendrites are sheared off into equiaxed/fragmented grains and then washed away continuously to produce semisolid slurry at plate exit. Melt pouring temperature provides required condition of solidification whereas plate inclination enables necessary shear for producing semisolid slurry of desired quality. Slurry obtained was solidified in metal mould to produce semisolid-cast billets of desired microstructure. Furthermore, semisolid-cast billets were heat treated to improve surface quality. Microstructures of both semisolid-cast and heat-treated billets were analyzed. Effects of melt pouring temperature and plate inclination on solidification and microstructure of billets produced using oblique plate were described. The investigations involved four different melt pouring temperatures (620, 625, 630 and 635 °C) associated with four different plate inclinations (30°, 45°, 60° and 75°). Melt pouring temperature of 625 °C with plate inclination of 60° shows fine and globular microstructures and it is the optimum.
基金Project(52202455)supported by the National Natural Science Foundation of ChinaProject(23A0017)supported by the Key Project of Scientific Research Project of Hunan Provincial Department of Education,China。
文摘In order to overcome the limitations of traditional microperforated plate with narrow sound absorption bandwidth and a single structure,two multi-cavity composite sound-absorbing materials were designed based on the shape of monoclinic crystals:uniaxial oblique structure(UOS)and biaxial oblique structure(BOS).Through finite element simulation and experimental research,the theoretical models of UOS and BOS were verified,and their sound absorption mechanisms were revealed.At the same time,the influence of multi-cavity composites on sound absorption performance was analyzed based on the theoretical model,and the influence of structural parameters on sound absorption performance was discussed.The research results show that,in the range of 100-2000 Hz,UOS has three sound absorption peaks and BOS has five sound absorption peaks.The frequency range of the half-absorption bandwidth(α>0.5)of UOS and BOS increases by 242% and 229%,respectively.Compared with traditional microperforated sound-absorbing structures,the series and parallel hybrid methods significantly increase the sound-absorbing bandwidth of the sound-absorbing structure.This research has guiding significance for noise control and has broad application prospects in the fields of transportation,construction,and mechanical design.