期刊文献+
共找到362篇文章
< 1 2 19 >
每页显示 20 50 100
Limit analysis of vertical anti-pulling screw pile group under inclined loading on 3D elastic-plastic finite element strength reduction method 被引量:11
1
作者 董天文 郑颖人 《Journal of Central South University》 SCIE EI CAS 2014年第3期1165-1175,共11页
Based on the functional theory, catastrophe theory, simultaneity principle and the idea of strength reduction method (SRM), the bearing capacity functional anti SRM of pile group foundation were established, and the... Based on the functional theory, catastrophe theory, simultaneity principle and the idea of strength reduction method (SRM), the bearing capacity functional anti SRM of pile group foundation were established, and the criteria of ultimate load and the concept of safety storage coefficient (Css) were advanced. The inclined ultimate loads by the static loading test, load increment method (LIM) and SRM are compared. Theoretically, the ultimate load of piles does not change with the loading levels when it is calculated by SRM. When the one strength reduction parameter is applied in the calculation boundary, there are calculating errors because the bearing capacity action of soils happened in the finite zone. The inclined 10adings are 108, 132 and 144 kN, and SSC are 1.07, 0.94 and 0.79, respectively, so the calculation values of ultimate loads are about 115.56, 124.08 and 113.76 kN, respectively. The error between calculations and observation values is less than 6%. But .the error between calculations of LIM and observations is 20%. Because of the effect of inclined loading, the push-rotation phenomenon of screw pile group appears. Under this testing, the ultimate bearing capacity of piles is mostly determined by the horizontal ultimate bearing capacity, and the effect of the vertical component of inclined load should also be considered. 展开更多
关键词 strength reduction method screw pile group ultimate load inclined loading
下载PDF
Behavior of ring footing resting on reinforced sand subjected to eccentric-inclined loading 被引量:1
2
作者 Vaibhav Sharma Arvind Kumar 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2018年第2期347-357,共11页
Ring footings are suitable for the structures like tall transmission towers, chimneys, silos and oil storages.These types of structures are susceptible to horizontal loads(wind load) in addition to their dead weight.I... Ring footings are suitable for the structures like tall transmission towers, chimneys, silos and oil storages.These types of structures are susceptible to horizontal loads(wind load) in addition to their dead weight.In the literature, very little or no effort has been made to study the effect of ring footing resting on reinforced sand when subjected to eccentric, inclined and/or eccentric-inclined loadings. This paper aims to study the behavior of ring footing resting on loose sand and/or compacted randomly distributed fiberreinforced sand(RDFS) when subjected to eccentric(0 B, 0.05 B and 0.1 B, where B is the outer diameter of ring footing), inclined(0°,5°,10°, 15°,-5°,-10° and-15°)and eccentric-inclined loadings by using a finite element(FE) software PLAXIS 3 D. The behavior of ring footing is studied by using a dimensionless factor called reduction factor(RF). The numerical model used in the PLAXIS 3 D has been validated by conducting model plate load tests. Moreover, an empirical expression using regression analysis has been presented which will be helpful in plotting a load-settlement curve for the ring footing. 展开更多
关键词 Soil reinforcement Ring footing Numerical method Randomly distributed fibers load inclination load eccentricity Model tests Reduction factor(RF)
下载PDF
On the Development of a Model for the Prediction of Liquid Loading in Gas Wells with an Inclined Section 被引量:2
3
作者 Mengna Liao Ruiquan Liao +4 位作者 Jie Liu Shuangquan Liu Li Li Xiuwu Wang Yang Cheng 《Fluid Dynamics & Materials Processing》 EI 2019年第5期527-544,共18页
The ability to predict liquid loading in horizontal gas wells is of great importance for determining the time of drainage and optimizing the related production technology.In the present work,we describe the outcomes o... The ability to predict liquid loading in horizontal gas wells is of great importance for determining the time of drainage and optimizing the related production technology.In the present work,we describe the outcomes of experiments conducted using air-water mixtures in a horizontal well.The results show that the configuration with an inclined section is the most susceptible to liquid loading.Laboratory experiments in an inclined pipe were also conducted to analyze the variation of the critical gas flow rate under different angles,pressure and liquid volume(taking the equal liquid volume at inlet and outlet as the criterion for judging on the critical state).According to these results,the related angle of the inclined section ranges from 45°to 60°.Finally,a modified approach based on the Belfroid model has been used to predict the critical gas flow rate for the inclined section.After comparison with field data,this modified model shows an accuracy of 96%,indicating that it has better performances with respect to other models used in the past to predict liquid loading. 展开更多
关键词 Horizontal gas well inclined section liquid loading critical gas flow rate air-water flow
下载PDF
MOVING INCLINED LOAD AT BOUNDARY SURFACE
4
作者 Rajneesh Kumar Praveen Ailawalia 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 2005年第4期476-485,共10页
The analytic expressions for the displacement components and stresses at a point of an orthotropic micropolar elastic medium with an overlying elastic half space as a result of moving inclined load of arbitrary orient... The analytic expressions for the displacement components and stresses at a point of an orthotropic micropolar elastic medium with an overlying elastic half space as a result of moving inclined load of arbitrary orientation were obtained. The inclined load was assumed to be a linear combination of a normal load and a tangential load. The eigen value approach using Fourier transforms was employed and the transform was inverted by using a numerical technique.The numerical results were illustrated graphically for aluminium epoxy composite. 展开更多
关键词 orthotropic micropolar moving inclined load EIGENVALUE Fourier transform
下载PDF
Elastodynamic analysis at an interface of viscous fluid/thermoelastic micropolar honeycomb medium due to inclined load
5
作者 Rajneesh Kumar Rajani Rani Gupta Li-qun CHEN 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 2009年第3期353-364,共12页
In this paper, the effect of angle inclination at the interface of a viscous fluid and thermoelastic micropolar honeycomb solid due to inclined load is investigated. The inclined load is assumed to be a linear combina... In this paper, the effect of angle inclination at the interface of a viscous fluid and thermoelastic micropolar honeycomb solid due to inclined load is investigated. The inclined load is assumed to be a linear combination of normal load and tangential load. Laplace transform with respect to time variable and Fourier transform with respect to space variable are applied to solve the problem. Expressions of stresses, temperature distribution, and pressures in the transformed domain are obtained by introducing potential functions. The numerical inversion technique is used to obtain the solution in the physical domain. The frequency domain expressions for steady state are also obtained with appropriate change of variables. Graphic representations due to the response of different sources and changes of angle inclination are shown. Some particular cases are also discussed. 展开更多
关键词 viscous fluid thermoelastic micropolar honeycomb material inclined load time harmonic steady state
下载PDF
Finite element analysis of couple effect of soil displacement and axial load on single inclined pile
6
作者 王丽 郑刚 欧若楠 《Journal of Central South University》 SCIE EI CAS 2014年第9期3656-3664,共9页
The couple effect of soil displacement and axial load on the single inclined pile in cases of surcharge load and uniform soil movement is discussed in detail with the methods of full-scale field tests and finite eleme... The couple effect of soil displacement and axial load on the single inclined pile in cases of surcharge load and uniform soil movement is discussed in detail with the methods of full-scale field tests and finite element method. Parametric analyses including the degree of inclination and the distance between soil and pile are carried out herein. When the displacement of soil on the left side and right side of a pile is identical, deformation of a vertical pile and an inclined pile is highly close in both cases of surcharge load and uniform soil movement. When the couple effect of soil displacement and axial load occurs, settlement of an inclined pile is greater than that of a vertical pile under the same axial load, and bearing capacity of an inclined pile is smaller than that of a vertical pile. This is quite different from the case when the inclined pile is not affected by soil displacement. For inclined piles, P-Δ effect of axial load would lead to a large increase in bending moment, however, for the vertical pile, P-Δ effect of axial load can be neglected. Although the direction of inclination of piles is reverse, deformation of piles caused by uniform soil movement is totally the same. For the inclined piles discussed herein, bending moment(-8 m to-17 m under the ground) relies heavily on uniform soil movement and does not change during the process of applying axial load. When the thickness of soil is less than the pile length, the greater the thickness of soil, the larger the bending moment at lower part of the inclined pile. When the thickness of soil is larger than the pile length, bending moment at lower part of the inclined pile is zero. 展开更多
关键词 couple effect inclined pile surcharge load uniform soil movement axial load
下载PDF
Maximum Force of Inclined Pullout of A Torpedo Anchor in Cohesive Beds 被引量:4
7
作者 WANG Cheng CHEN Xiao-hui YU Guo-liang 《China Ocean Engineering》 SCIE EI CSCD 2019年第3期333-343,共11页
Torpedo anchors have been used in mooring systems for deep-water oil and gas projects owing to their prominent advantages, such as low cost and easy installation. The maximum force of torpedo anchors is crucial not on... Torpedo anchors have been used in mooring systems for deep-water oil and gas projects owing to their prominent advantages, such as low cost and easy installation. The maximum force of torpedo anchors is crucial not only to the safety and stability of vessels and other marine facilities, but also for an economical design. It is necessary to develop reliable formula for fast predicting their maximum inclined force of a torpedo anchor in cohesive beds. In this study, the maximum inclined force of a torpedo anchor vertically embedded in cohesive beds was extensively investigated. 316 sets of inclined pullout laboratory tests were carried out for 9 differently shaped torpedo anchors which were vertically embedded in different cohesive beds. The loading curves were automatically acquisitioned and their characteristics were analyzed. The load angle relative to the horizontal varied from 20° to 90°. A new formula for fast calculating the maximum inclined force of the torpedo anchor vertically embedded in cohesive beds was obtained based on force analysis and a nonlinear regression on the data from the present and other studies. Effect aspects on the tests are discussed and further studies are highlighted. 展开更多
关键词 TORPEDO ANCHOR MAXIMUM inclined FORCE COHESIVE bed load angle EMBEDMENT depth
下载PDF
Effects of different pull-out loading rates on mechanical behaviors and acoustic emission responses of fully grouted bolts 被引量:4
8
作者 DU Yun-lou FENG Guo-rui +2 位作者 KANG Hong-pu ZHANG Yu-jiang ZHANG Xi-hong 《Journal of Central South University》 SCIE EI CAS CSCD 2021年第7期2052-2066,共15页
Due to the influence of mining disturbance stress,it is of great significance to better understand the bearing characteristics of fully grouted bolts under different pull-out loading rates.For this purpose,a series of... Due to the influence of mining disturbance stress,it is of great significance to better understand the bearing characteristics of fully grouted bolts under different pull-out loading rates.For this purpose,a series of laboratory pull-out tests were conducted to comprehensively investigate the effects of different pull-out loading rates on the mechanical performance and failure characteristics of fully grouted bolts.The results show that the mechanical performance of the anchored specimen presents obvious loading rate dependence and shear enhancement characteristics.With the increase of the pull-out loading rates,the maximum pull-out load increases,the displacement and time corresponding to the maximum pull-out load decrease.The accumulated acoustic emission(AE)counts,AE energy and AE events all decrease with the increase of the pull-out loading rates.The AE peak frequency has obvious divisional distribution characteristics and the amplitude is mainly distributed between 50-80 dB.With the increase of the pull-out loading rates,the local strain of the anchoring interface increases and the failure of the anchoring interface transfers to the interior of the resin grout.The accumulated AE counts are used to evaluate the damage parameter of the anchoring interface during the whole pull-out process.The analytical results are in good agreement with the experimental results.The research results may provide guidance for the support design and performance monitoring of fully grouted bolts. 展开更多
关键词 fully grouted bolts pull-out test loading rate mechanical behavior AE response failure characteristic
下载PDF
Model tests and numerical analyses on horizontal impedance functions of inclined single piles embedded in cohesionless soil 被引量:2
9
作者 Chandra Shekhar Goit Masato Saitoh 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2013年第1期143-154,共12页
Horizontal impedance functions of inclined single piles are measured experimentally for model soil-pile systems with both the effects of local soil nonlinearity and resonant characteristics.Two practical pile inclinat... Horizontal impedance functions of inclined single piles are measured experimentally for model soil-pile systems with both the effects of local soil nonlinearity and resonant characteristics.Two practical pile inclinations of 5掳 and 10掳 in addition to a vertical pile embedded in cohesionless soil and subjected to lateral harmonic pile head loadings for a wide range of frequencies are considered.Results obtained with low-to-high amplitude of lateral loadings on model soil-pile systems encased in a laminar shear box show that the local nonlinearities have a profound impact on the horizontal impedance functions of piles.Horizontal impedance functions of inclined piles are found to be smaller than the vertical pile and the values decrease as the angle of pile inclination increases.Distinct values of horizontal impedance functions are obtained for the 'positive' and 'negative' cycles of harmonic loadings,leading to asymmetric force-displacement relationships for the inclined piles.Validation of these experimental results is carried out through three-dimensional nonlinear finite element analyses,and the results from the numerical models are in good agreement with the experimental data.Sensitivity analyses conducted on the numerical models suggest that the consideration of local nonlinearity at the vicinity of the soil-pile interface influence the response of the soil-pile systems. 展开更多
关键词 inclined single piles harmonic loads horizontal impedance functions local nonlinearity finite element model
下载PDF
A new model for predicting the critical liquid-carrying velocity in inclined gas wells
10
作者 WANG Wujie CUI Guomin +1 位作者 WEI Yaoqi PAN Jie 《Petroleum Exploration and Development》 CSCD 2021年第5期1218-1226,共9页
Based on the assumption of gas-liquid stratified flow pattern in inclined gas wells,considering the influence of wettability and surface tension on the circumferential distribution of liquid film along the wellbore wa... Based on the assumption of gas-liquid stratified flow pattern in inclined gas wells,considering the influence of wettability and surface tension on the circumferential distribution of liquid film along the wellbore wall,the influence of the change of the gas-liquid interface configuration on the potential energy,kinetic energy and surface free energy of the two-phase system per unit length of the tube is investigated,and a new model for calculating the gas-liquid distribution at critical conditions is developed by using the principle of minimum energy.Considering the influence of the inclination angle,the calculation model of interfacial friction factor is established,and finally closed the governing equations.The interface shape is more vulnerable to wettability and surface tension at a low liquid holdup,resulting in a curved interface configuration.The interface is more curved when the smaller is the pipe diameter,or the smaller the liquid holdup,or the smaller the deviation angle,or the greater gas velocity,or the greater the gas density.The critical liquid-carrying velocity increases nonlinearly and then decreases with the increase of inclination angle.The inclination corresponding to the maximum critical liquid-carrying velocity increases with the increase of the diameter of the wellbore,and it is also affected by the fluid properties of the gas phase and liquid phase.The mean relative errors for critical liquid-carrying velocity and critical pressure gradient are 1.19%and 3.02%,respectively,and the misclassification rate is 2.38%in the field trial,implying the new model can provide a valid judgement on the liquid loading in inclined gas wells. 展开更多
关键词 inclined gas well gas-liquid phase distribution interfacial friction factor critical liquid-carrying velocity bottom-hole liquid loading
下载PDF
Prediction of a maximum pull-out load of anchor bolts using an optimal combination model
11
作者 Ma Wenjie Wang Binglong +1 位作者 Wang Xu Wang Bolin 《Journal of Southeast University(English Edition)》 EI CAS 2021年第2期199-208,共10页
The mixed model of improved exponential and power function and unequal interval gray GM(1,1)model have poor accuracy in predicting the maximum pull-out load of anchor bolts.An optimal combination model was derived usi... The mixed model of improved exponential and power function and unequal interval gray GM(1,1)model have poor accuracy in predicting the maximum pull-out load of anchor bolts.An optimal combination model was derived using the optimally weighted combination theory and the minimum sum of logarithmic squared errors as the objective function.Two typical anchor bolt pull-out engineering cases were selected to compare the performance of the proposed model with those of existing ones.Results showed that the optimal combination model was suitable not only for the slow P-s curve but also for the steep P-s curve.Its accuracy and stable reliability,as well as its prediction capability classification,were better than those of the other prediction models.Therefore,the optimal combination model is an effective processing method for predicting the maximum pull-out load of anchor bolts according to measured data. 展开更多
关键词 anchor bolt maximum pull-out load mixed model of improved exponential and power function(MIEPF)model unequal interval gray GM(1 1)model optimal combination model
下载PDF
A hardening load transfer function for rock bolts and its calibration using distributed fiber optic sensing 被引量:4
12
作者 Assaf Klar Ori Nissim Itai Elkayam 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2023年第11期2816-2830,共15页
Confinement of rock bolts by the surrounding rock formation has long been recognized as a positive contributor to the pull-out behavior,yet only a few experimental works and analytical models have been reported,most o... Confinement of rock bolts by the surrounding rock formation has long been recognized as a positive contributor to the pull-out behavior,yet only a few experimental works and analytical models have been reported,most of which are based on the global rock bolt response evaluated in pull-out tests.This paper presents a laboratory experimental setup aiming to capture the rock formation effect,while using distributed fiber optic sensing to quantify the effect of the confinement and the reinforcement pull-out behavior on a more local level.It is shown that the behavior along the sample itself varies,with certain points exhibiting stress drops with crack formation.Some edge effects related to the kinematic freedom of the grout to dilate are also observed.Regardless,it was found that the mid-level response is quite similar to the average response along the sample.The ability to characterize the variation of the response along the sample is one of the many advantages high-resolution fiber optic sensing allows in such investigations.The paper also offers a plasticity-based hardening load transfer function,representing a"slice"of the anchor.The paper describes in detail the development of the model and the calibration/determination of its parameters.The suggested model captures well the coupled behavior in which the pull-out process leads to an increase in the confining stress due to dilative behavior. 展开更多
关键词 Rock bolts Distributed fiber optic sensing pull-out tests load transfer function Hardening model
下载PDF
Effect of bolt inclination angle on shear behavior ofbolted joints under CNL and CNS conditions 被引量:14
13
作者 CUI Guo-jian ZHANG Chuan-qing +3 位作者 CHEN Jian-lin YANG Fan-jie ZHOU Hui LU Jing-jing 《Journal of Central South University》 SCIE EI CAS CSCD 2020年第3期937-950,共14页
Rock bolts are widely used in rock engineering projects to improve the shear capacity of the jointed rock mass.The bolt inclination angle with respect to the shear plane has a remarkable influence on the bolting perfo... Rock bolts are widely used in rock engineering projects to improve the shear capacity of the jointed rock mass.The bolt inclination angle with respect to the shear plane has a remarkable influence on the bolting performance.In this study,a new artificial molding method based on 3D scanning and printing technology was first proposed to prepare bolted joints with an inclined bolt.Then,the effects of the bolt inclination angle and boundary conditions on the shear behavior and failure characteristic of bolted joints were addressed by conducting direct shear tests under both CNL and CNS conditions.Results indicated that rock bolt could significantly improve the shear behavior of rock joints,especially in the post-yield deformation region.With the increase of bolt inclination angle,both the maximum shear stress and the maximum friction coefficient increased first and then decreased,while the maximum normal displacement decreased monotonously.Compared with CNL conditions,the maximum shear stress was larger,whereas the maximum normal displacement and friction coefficient were smaller under the CNS conditions.Furthermore,more asperity damage was observed under the CNS conditions due to the increased normal stress on the shear plane. 展开更多
关键词 bolted joints bolt inclination angle constant normal load(CNL)boundary conditions constant normal stiffness(CNS)boundary conditions direct shear test asperity damage
下载PDF
Experimental and numerical evaluation on debonding of fully grouted rockbolt under pull‑out loading
14
作者 Shuisheng Yu Wancheng Zhu Leilei Niu 《International Journal of Coal Science & Technology》 EI CAS CSCD 2022年第1期84-98,共15页
The axial loading in rockbolts changes due to stress redistribution and rheology in the country rock mass.Such a change may lead to debonding at rockbolt to grout interface or rupture of the rockbolt.In this study,bas... The axial loading in rockbolts changes due to stress redistribution and rheology in the country rock mass.Such a change may lead to debonding at rockbolt to grout interface or rupture of the rockbolt.In this study,based on laboratory experiments,ultrasonic guided wave propagation in fully grouted rockbolt under different pull-out loads was investigated in order to examine the resultant debonding of rockbolt.The signals obtained from the ultrasonic monitoring during the pull-out test were processed using wavelet multi-scale analysis and frequency spectrum analysis,the signal amplitude and the amplitude ratio(Q)of low frequency to high frequency were defined to quantify the debonding of rockbolt.In addition to the laboratory test,numerical simulation on the effect of the embedment lengths on ultrasonic guided wave propagation in rockbolt was conducted by using a damage-based model,and the debonding between rockbolt and cement mortar was numerically examined.It was confirmed that the ultrasonic guided wave propagation in rockbolt was very sensitive to the debonding because of pull-out load,therefore,the critical bond length could be calculated based on the propagation of guided wave in the grouted rockbolt.In time domain,the signal amplitude in rockbolt increased with pull-out load from 0 to 100 kN until the completely debonding,thus quantifying the debonding under the different pull-out loads.In the frequency domain,as the Q value increased,the debonding length of rockbolt decreased exponentially.The numerical results confirmed that the guided wave propagation in the fully grouted rockbolt was effective in detecting and quantifying the debonding of rockbolt under pull-out load. 展开更多
关键词 Fully grouted rockbolt DEBONDING pull-out load Ultrasonic guided wave propagation
下载PDF
倾斜矿体采空区非对称顶板-矿柱结构体协同承载机理 被引量:2
15
作者 姜立春 李金柱 《中国有色金属学报》 EI CAS CSCD 北大核心 2024年第1期329-343,共15页
为解决倾斜矿体回采后大倾角顶板和非对称空区可能引发的采空区支撑结构体变形及破坏失稳问题,以某石灰石矿非对称顶板-矿柱支撑结构体为研究对象,构建结构体承载力学模型,求解顶板挠曲变形值及矿柱安全系数,分析不同倾角、跨度比下顶... 为解决倾斜矿体回采后大倾角顶板和非对称空区可能引发的采空区支撑结构体变形及破坏失稳问题,以某石灰石矿非对称顶板-矿柱支撑结构体为研究对象,构建结构体承载力学模型,求解顶板挠曲变形值及矿柱安全系数,分析不同倾角、跨度比下顶板变形特征及矿柱失稳破坏模式,研究其协同承载机理。结果表明:顶板变形、矿柱失稳破坏模式受采空区倾角θ和跨度比λ的双重影响,顶板变形大小随着θ的增加表现为双增长率,与λ的关系伴随着θ的变化而变化。矿柱失稳破坏模式受θ的影响程度随着λ的增加而减小,当0°<θ≤30°时,矿柱主要为小偏心受压破坏;当θ=0°和30°<θ≤60°时,随着λ值的增加,矿柱破坏模式从大偏心受压破坏向小偏心受压破坏转变。顶板维系采空区稳定的能力随着θ的增加逐渐降低,矿柱维系采空区稳定的最优λ值随着θ的增加逐渐减小,矿柱约束顶板变形作用大小随着λ的增加而降低。数值模拟和工程实例验证了理论计算结果的可靠性,为地下空场法矿山安全开采提供一定的理论支撑。 展开更多
关键词 非对称空区 顶板-矿柱 倾斜矿体 偏心载荷 协同作用
下载PDF
双锚片螺旋锚倾斜拉拔承载特性与承载力计算方法研究
16
作者 胡伟 李砥柱 +2 位作者 林志 冯世进 黄勇祥 《岩土力学》 EI CAS CSCD 北大核心 2024年第6期1661-1674,1685,共15页
目前对多锚片螺旋锚倾斜拉拔承载特性机制的认识尚不全面,承载力计算方法也还不成熟。采用自制模型试验装置开展了双锚片螺旋锚的多角度倾斜拉拔模型试验,分析了荷载倾角、埋深比对荷载−位移曲线和抗拔承载力因子的影响规律。通过量化... 目前对多锚片螺旋锚倾斜拉拔承载特性机制的认识尚不全面,承载力计算方法也还不成熟。采用自制模型试验装置开展了双锚片螺旋锚的多角度倾斜拉拔模型试验,分析了荷载倾角、埋深比对荷载−位移曲线和抗拔承载力因子的影响规律。通过量化水平向和竖向的控制程度分析了两个方向的耦合效应;基于数值模拟标定了锚片间距和荷载倾角对锚片上土压力的影响,提出了锚片上土压力影响系数计算方法,引入考虑位移影响的土压力近似计算方法和p-y曲线法,构建了双锚片螺旋锚倾斜拉拔力学模型,提出了双锚片螺旋锚倾斜拉拔承载力计算方法和相应步骤,并在3个试验案例的计算中取得了较好的效果。所提模型和计算方法的研究思路可推广至其他多锚片的情况,但螺旋锚需满足属于刚性短桩的前提条件。 展开更多
关键词 螺旋锚 倾斜拉拔 模型试验 锚片间距 承载力
下载PDF
非对称载荷作用下倾斜区段煤柱稳定性分析及控制技术
17
作者 来兴平 尉迟小骞 +1 位作者 单鹏飞 方贤威 《西安科技大学学报》 CAS 北大核心 2024年第2期203-212,共10页
为解决工作面回采及巷道掘进影响下倾斜区段煤柱稳定性劣化的复杂问题,运用弹性力学半逆解法及摩尔-库伦准则建立力学模型,结合三维有限元数值模拟,深入分析了倾斜区段煤柱一侧受载结构形态特征,明确了倾斜煤柱失稳致灾力源及载荷的分... 为解决工作面回采及巷道掘进影响下倾斜区段煤柱稳定性劣化的复杂问题,运用弹性力学半逆解法及摩尔-库伦准则建立力学模型,结合三维有限元数值模拟,深入分析了倾斜区段煤柱一侧受载结构形态特征,明确了倾斜煤柱失稳致灾力源及载荷的分布特性,探究了采掘扰动下倾斜区段煤柱塑性变形-失稳-破坏的动态演化过程,揭示了非对称载荷作用下倾斜区段煤柱临界失稳致灾机理,以此为基础优化了倾斜煤柱及周围巷道稳定性控制技术。结果表明:区段煤柱因煤层倾角导致的倾斜形态是煤柱所承受载荷呈非对称状的关键诱因,这一特性致使倾斜煤柱最底端区域覆载最大,且当此区域失稳破坏时,呈现由煤柱下端底角塑性区向煤柱上端底角塑性区扩展的运移过程,并因此得出倾斜区段煤柱临界尺寸随煤层倾角增大而增加的演化规律。由此,针对大南湖一矿倾斜区段煤柱及周围巷道变形失稳的问题,采用支护优化及注浆加固等措施,降低了倾斜区段煤柱侧巷道的变形速率,为类似矿井的煤柱稳定性控制提供了借鉴。 展开更多
关键词 倾斜区段煤柱 非对称载荷 临界尺寸 数值模拟 巷道支护优化
下载PDF
风向角和倾角对光伏阵列风荷载的影响 被引量:1
18
作者 全勇 吴建高 +2 位作者 陈艳 王辛铭 敬海泉 《太阳能学报》 EI CAS CSCD 北大核心 2024年第1期25-31,共7页
该文通过数值模拟方法,系统研究单竖排光伏阵列的风荷载特性以及风向角和倾角的影响。结果表明:光伏阵列在横风作用下,迎风侧光伏组件的风荷载系数最大;光伏组件阻力系数、升力系数以及扭矩系数均随倾角的增大而增大,且在倾角小于20... 该文通过数值模拟方法,系统研究单竖排光伏阵列的风荷载特性以及风向角和倾角的影响。结果表明:光伏阵列在横风作用下,迎风侧光伏组件的风荷载系数最大;光伏组件阻力系数、升力系数以及扭矩系数均随倾角的增大而增大,且在倾角小于20°时变化速率较大,大于20°之后体型系数趋于平缓;光伏阵列中,组件风荷载系数的遮挡效应十分明显,迎风侧光伏组件降低了背风侧组件的来流风速,使得位于下游区域的光伏组件所受风荷载显著减小,且倾角越大遮挡效应越明显。 展开更多
关键词 光伏系统 风荷载 数值模拟 风向角 倾角
下载PDF
分配特殊群桩空间作用效应的双向m法 被引量:1
19
作者 廖立坚 苏伟 +1 位作者 杨新安 王雨权 《岩土工程学报》 EI CAS CSCD 北大核心 2024年第6期1197-1205,共9页
群桩到单桩的作用分配是桩基计算的关键问题,针对规范中的单向m法只适用于平面作用的局限性,从单桩刚度、群桩刚度、受力平衡方程3个层面进行公式推导,建立了变形协调的群桩刚度矩阵和空间受力平衡方程,形成了适用于空间作用的双向m法,... 群桩到单桩的作用分配是桩基计算的关键问题,针对规范中的单向m法只适用于平面作用的局限性,从单桩刚度、群桩刚度、受力平衡方程3个层面进行公式推导,建立了变形协调的群桩刚度矩阵和空间受力平衡方程,形成了适用于空间作用的双向m法,并以对称等长直桩、双向斜桩、不对称桩为计算实例,对比分析了单向m法和双向m法的计算结果。结果表明:单向m法计算对称等长直桩时,结果准确,计算双向斜桩时,单桩的弯矩和剪力波动较大,最大值偏小20%左右,计算不对称桩时,单桩外力之和与总外力不闭合,可信度低;而双向m法的理论解可覆盖这些桩基类型,结果更接近有限元数值解。研究成果为特殊桩基提供了一种快速且简便的计算方法,扩展了公路和铁路桥梁桩基设计规范的适用范围。 展开更多
关键词 群桩 作用分配 空间作用 M法 双向斜桩 不对称桩
下载PDF
油气井斜承载台阶面强度研究——以万米超深井超重送入钻杆45°台阶面为例
20
作者 史君林 冯少波 +3 位作者 明传中 练章华 万智勇 张强 《中国安全生产科学技术》 CAS CSCD 北大核心 2024年第10期36-45,共10页
为应对钻探深度增加带来的井口设备超重载荷挑战,解决超重载荷承载台阶设计校核缺乏统一标准等问题,开展对承载台阶强度的研究。首先,建立考虑摩擦力的斜面台阶力学模型,提出承载台阶剪切失效模型下的计算公式,并对不同设计准则、安全... 为应对钻探深度增加带来的井口设备超重载荷挑战,解决超重载荷承载台阶设计校核缺乏统一标准等问题,开展对承载台阶强度的研究。首先,建立考虑摩擦力的斜面台阶力学模型,提出承载台阶剪切失效模型下的计算公式,并对不同设计准则、安全系数和标准下的结果进行对比分析。然后,以万米超深井超重尾管设计的新型带45°斜坡的送入钻杆为例,结合理论分析与弹塑性非线性有限元,进行多种方法求解极限载荷研究,得到轴向的许用载荷和极限载荷,并对钻杆台阶面进行局部应变等评价。研究结果表明:所提出剪切失效公式可用于斜面台阶承载极限载荷计算,建议采用ASME BPVCⅧ-3规定的弹塑性方法进行精细分析,载荷系数取1.8计算许用极限载荷。研究结果为油气井行业中井口设备承载的斜台阶设计与计算提供理论基础与参考。 展开更多
关键词 超深万米井 承载斜台阶 送入钻杆 弹塑性分析 极限载荷
下载PDF
上一页 1 2 19 下一页 到第
使用帮助 返回顶部