期刊文献+
共找到10篇文章
< 1 >
每页显示 20 50 100
An Iterative Method for Split Variational Inclusion Problem and Split Fixed Point Problem for Averaged Mappings
1
作者 Kaiwen Wang Yali Zhao Ziru Zhao 《Journal of Applied Mathematics and Physics》 2023年第6期1541-1556,共16页
In this paper, we use resolvent operator technology to construct a viscosity approximate algorithm to approximate a common solution of split variational inclusion problem and split fixed point problem for an averaged ... In this paper, we use resolvent operator technology to construct a viscosity approximate algorithm to approximate a common solution of split variational inclusion problem and split fixed point problem for an averaged mapping in real Hilbert spaces. Further, we prove that the sequences generated by the proposed iterative method converge strongly to a common solution of split variational inclusion problem and split fixed point problem for averaged mappings which is also the unique solution of the variational inequality problem. The results presented here improve and extend the corresponding results in this area. 展开更多
关键词 Split Variational inclusion problem Split Fixed Point problem Iterative Algorithm Averaged Mapping CONVERGENCE
下载PDF
A NEW ITERATIVE METHOD FOR FINDING COMMON SOLUTIONS OF GENERALIZED EQUILIBRIUM PROBLEM,FIXED POINT PROBLEM OF INFINITE k-STRICT PSEUDO-CONTRACTIVE MAPPINGS,AND QUASI-VARIATIONAL INCLUSION PROBLEM 被引量:5
2
作者 刘敏 张石生 《Acta Mathematica Scientia》 SCIE CSCD 2012年第2期499-519,共21页
In this article, we introduce a hybrid iterative scheme for finding a common element of the set of solutions for a generalized equilibrium problems, the set of common fixed point for a family of infinite k-strict pseu... In this article, we introduce a hybrid iterative scheme for finding a common element of the set of solutions for a generalized equilibrium problems, the set of common fixed point for a family of infinite k-strict pseudo-contractive mappings, and the set of solutions of the variational inclusion problem with multi-valued maximal monotone mappings and inverse-strongly monotone mappings in Hilbert space. Under suitable conditions, some strong convergence theorems are proved. Our results extends the recent results in G.L.Acedo and H.K.Xu [2], Zhang, Lee and Chan [8], Wakahashi and Toyoda [9], Takahashi and Takahashi [I0] and S. S. Chang, H. W. Joseph Lee and C. K. Chan [II], S.Takahashi and W.Takahashi [12]. Moreover, the method of proof adopted in this article is different from those of [4] and [12]. 展开更多
关键词 k-strict pseudo-contractive mappings generalized equilibrium problem vis-cosity approximation method variational inclusion problem multi-valuedmaximal monotone mappings s-inverse-strongly monotone mapping
下载PDF
STRONGLY CONVERGENT ITERATIVE METHODS FOR SPLIT EQUALITY VARIATIONAL INCLUSION PROBLEMS IN BANACH SPACES 被引量:1
3
作者 张石生 王林 +1 位作者 秦丽娟 马招丽 《Acta Mathematica Scientia》 SCIE CSCD 2016年第6期1641-1650,共10页
The purpose of this paper is to introduce and study the split equality variational inclusion problems in the setting of Banach spaces. For solving this kind of problems, some new iterative algorithms are proposed. Und... The purpose of this paper is to introduce and study the split equality variational inclusion problems in the setting of Banach spaces. For solving this kind of problems, some new iterative algorithms are proposed. Under suitable conditions, some strong convergence theorems for the sequences generated by the proposed algorithm are proved. As applications, we shall utilize the results presented in the paper to study the split equality feasibility prob- lems in Banach spaces and the split equality equilibrium problem in Banach spaces. The results presented in the paper are new. 展开更多
关键词 the split equality variational inclusion problem in Banach space split feasibilityproblem in Banach space split equilibrium problem in Banach spaces
下载PDF
A NEW ALGORITHM FOR MONOTONE INCLUSION PROBLEMS AND FIXED POINTS ON HADAMARD MANIFOLDS WITH APPLICATIONS
4
作者 Shih-sen CHANG Jinfang TANG Chingfeng WEN 《Acta Mathematica Scientia》 SCIE CSCD 2021年第4期1250-1262,共13页
In this article,we propose a new algorithm and prove that the sequence generalized by the algorithm converges strongly to a common element of the set of fixed points for a quasi-pseudo-contractive mapping and a demi-c... In this article,we propose a new algorithm and prove that the sequence generalized by the algorithm converges strongly to a common element of the set of fixed points for a quasi-pseudo-contractive mapping and a demi-contraction mapping and the set of zeros of monotone inclusion problems on Hadamard manifolds.As applications,we use our results to study the minimization problems and equilibrium problems in Hadamard manifolds. 展开更多
关键词 Monotone inclusion problem quasi-pseudo-contractive mapping demi-contraction mapping maximal monotone vector field quasi-nonexpansive mappings Hadamard manifold
下载PDF
AN ITERATIVE METHOD FOR SPLIT VARIATIONAL INCLUSION PROBLEM AND FIXED POINT PROBLEM FOR A FAMILY OF GENERALIZED ASYMPTOTICALLY NONEXPANSIVE SEMIGROUP
5
作者 Lijun Chen 《Annals of Applied Mathematics》 2017年第2期139-154,共16页
In this paper, strong convergence of an iterative sequence is proved, which computes an approximate solution of the set of solutions of split variational inclusion problem, the set of fixed points of a nonexpansive ma... In this paper, strong convergence of an iterative sequence is proved, which computes an approximate solution of the set of solutions of split variational inclusion problem, the set of fixed points of a nonexpansive mapping and the set of common fixed points of a family of generalized asymptotically nonexpansive semigroup. Results obtained in this paper extend and unify the previously known results in the previous literatures. 展开更多
关键词 split variational inclusion problem strong convergence theo rem fixed point problems generalized asymptotically nonexpansive semigroup
原文传递
Systems of generalized quasi-variational inclusion (disclusion) problems in FC-spaces
6
作者 丁协平 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 2010年第5期545-556,共12页
By applying an existence theorem of maximal elements of set-valued mappings in FC-spaces proposed by the author, some new existence theorems of solutions for systems of generalized quasi-variational inclusion (disclu... By applying an existence theorem of maximal elements of set-valued mappings in FC-spaces proposed by the author, some new existence theorems of solutions for systems of generalized quasi-variational inclusion (disclusion) problems are proved in FC-spaces without convexity structures. These results improve and generalize some results in recent publications from closed convex subsets of topological vector spaces to FC-spaces under weaker conditions. 展开更多
关键词 maximal element system of generalized quasi-variational inclusion (disclusion) problems partially diagonally quasi-convex partially diagonally quasi-concave FC-space
下载PDF
NEW SYSTEMS OF GENERALIZED QUASI-VARIATIONAL INCLUSIONS IN FC-SPACES AND APPLICATIONS 被引量:4
7
作者 丁协平 《Acta Mathematica Scientia》 SCIE CSCD 2011年第3期1142-1154,共13页
In this paper, we study some new systems of generalized quasi-variational inclusion problems in FC-spaces without convexity structure.By applying an existence theorem of maximal elements of set-valued mappings due to ... In this paper, we study some new systems of generalized quasi-variational inclusion problems in FC-spaces without convexity structure.By applying an existence theorem of maximal elements of set-valued mappings due to the author, some new existence theorems of solutions for the systems of generalized quasi-variational inclusion problems are proved in noncompact FC-spaces. As applications, some existence results of solutions for the system of quasi-optimization problems and mathematical programs with the systems of generalized quasi-variational inclusion constraints are obtained in FC-spaces. 展开更多
关键词 maximal element system of generalized quasi-variational inclusion problems system of quasi-optimization problems mathematical programs with systems of generalized quasi-variational inclusion constraints F C-space
下载PDF
Three solutions to inequalities of Dirichlet problem driven by p(x)-Laplacian
8
作者 葛斌 薛小平 郭梦舒 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 2010年第10期1283-1292,共10页
A class of nonlinear elliptic problems driven by p(x)-Laplacian with a nonsmooth locally Lipschitz potential is considered.By applying the version of the nonsmooth three-critical-point theorem,the existence of three... A class of nonlinear elliptic problems driven by p(x)-Laplacian with a nonsmooth locally Lipschitz potential is considered.By applying the version of the nonsmooth three-critical-point theorem,the existence of three solutions to the problems is proved. 展开更多
关键词 p(x)-Laplacian differential inclusion problem three-critical-point theorem
下载PDF
APPROXIMATING SOLUTION OF 0 ∈T(x) FOR AN H-MONOTONE OPERATOR IN HILBERT SPACES
9
作者 刘三阳 贺慧敏 陈汝栋 《Acta Mathematica Scientia》 SCIE CSCD 2013年第5期1347-1360,共14页
The purpose of this paper is to study the solution of 0∈ T(x) for an H- monotone operator introduced in [Fang and Huang, Appl. Math. Comput. 145(2003)795- 803] in Hilbert spaces, which is the first proposal of it... The purpose of this paper is to study the solution of 0∈ T(x) for an H- monotone operator introduced in [Fang and Huang, Appl. Math. Comput. 145(2003)795- 803] in Hilbert spaces, which is the first proposal of it's kind. Some strong and weak convergence results are presented and the relations between maximal monotone operators and H-monotone operators are analyzed. Simultaneously, we apply these results to the minimization problem for T = δf and provide some numerical examples to support the theoretical findings. 展开更多
关键词 H-monotone operators inclusion problem 0 T(x) resolvent operator strong convergence weak convergence
下载PDF
On Systems of Boundary Value Problems for Differential Inclusions
10
作者 Lynn ERBE Christopher C.TISDELL Patricia J.Y.WONG 《Acta Mathematica Sinica,English Series》 SCIE CSCD 2007年第3期549-556,共8页
Herein we consider the existence of solutions to second-order, two-point boundary value problems (BVPs) for systems of ordinary differential inclusions. Some new Bernstein-Nagumo conditions are presented that ensure... Herein we consider the existence of solutions to second-order, two-point boundary value problems (BVPs) for systems of ordinary differential inclusions. Some new Bernstein-Nagumo conditions are presented that ensure a priori bounds on the derivative of solutions to the differential inclusion. These a priori bound results are then applied, in conjunction with appropriate topological methods, to prove some new existence theorems for solutions to systems of BVPs for differential inclusions. The new conditions allow of the treatment of systems of BVPs without growth restrictions. 展开更多
关键词 boundary value problem systems of differential inclusions existence of solutions a priori bounds Bernstein-Nagumo condition
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部