B_2O^3 was added into tire cord steel during refining in carbon tube furnace.The influence of boron which was added in tire cord steel on the deformability of oxide inclusions was studied by metallographic and scannin...B_2O^3 was added into tire cord steel during refining in carbon tube furnace.The influence of boron which was added in tire cord steel on the deformability of oxide inclusions was studied by metallographic and scanning electron microscope(SEM) observation.The melting points of boron-bearing compound oxide inclusions were calculated by the software of Factsage.The results showed that the most part of inclusions were boron-bearing compound oxide and their deformation properties were obviously improved by adding B_2O_3 in steel.As the boron content was increased from 0.0046%to 0.039%,the proportion of long strip type inclusions changed a little and the number of inclusions decreased.The low-melting point areas of MnO-SiO_2-Al_2O_3 and CaO-SiO_2-Al_2O_3 ternary system were increased due to adding B_2O_3 in steel.Moreover,the areas increased with the increasing of B_2O_3 content in conclusions.Evident effect on low-melting point inclusion occurred when B_2O_3 content went up to 5% in CaO-SiO_2-Al_2O_3 inclusions system and to 10%in MnO-SiO_2-Al_2O_3 inclusions system.展开更多
B2O3 was added to tire cord steel during refining in a carbon tube furnace.The influence of boron on the deformability of oxide inclusions was studied by metallographic and scanning electron microscope(SEM) observat...B2O3 was added to tire cord steel during refining in a carbon tube furnace.The influence of boron on the deformability of oxide inclusions was studied by metallographic and scanning electron microscope(SEM) observations.The melting points of boron-bearing compound oxide inclusions were calculated using Factsage software.The results showed that the main inclusion was a boron-bearing compound oxide and the deformation properties of the inclusions were clearly improved by adding B2O3.As the boron content was increased from 0.0046% to 0.039%,the proportion of long strip type inclusions changed slightly and the number of inclusions decreased.The low-melting point areas of the MnO-SiO2-Al2O3 and CaO-SiO2-Al2O3 ternary system increased with the addition of B2O3.Moreover,the area increased with the increase of B2O3 content.Clear improvements in the deformation ability of the inclusions occurred when the B2O3 mass percent rose to 5% in the CaO-SiO2-Al2O3 inclusion system and to 10% in the MnO-SiO2-Al2O3 inclusion system展开更多
文摘B_2O^3 was added into tire cord steel during refining in carbon tube furnace.The influence of boron which was added in tire cord steel on the deformability of oxide inclusions was studied by metallographic and scanning electron microscope(SEM) observation.The melting points of boron-bearing compound oxide inclusions were calculated by the software of Factsage.The results showed that the most part of inclusions were boron-bearing compound oxide and their deformation properties were obviously improved by adding B_2O_3 in steel.As the boron content was increased from 0.0046%to 0.039%,the proportion of long strip type inclusions changed a little and the number of inclusions decreased.The low-melting point areas of MnO-SiO_2-Al_2O_3 and CaO-SiO_2-Al_2O_3 ternary system were increased due to adding B_2O_3 in steel.Moreover,the areas increased with the increasing of B_2O_3 content in conclusions.Evident effect on low-melting point inclusion occurred when B_2O_3 content went up to 5% in CaO-SiO_2-Al_2O_3 inclusions system and to 10%in MnO-SiO_2-Al_2O_3 inclusions system.
文摘B2O3 was added to tire cord steel during refining in a carbon tube furnace.The influence of boron on the deformability of oxide inclusions was studied by metallographic and scanning electron microscope(SEM) observations.The melting points of boron-bearing compound oxide inclusions were calculated using Factsage software.The results showed that the main inclusion was a boron-bearing compound oxide and the deformation properties of the inclusions were clearly improved by adding B2O3.As the boron content was increased from 0.0046% to 0.039%,the proportion of long strip type inclusions changed slightly and the number of inclusions decreased.The low-melting point areas of the MnO-SiO2-Al2O3 and CaO-SiO2-Al2O3 ternary system increased with the addition of B2O3.Moreover,the area increased with the increase of B2O3 content.Clear improvements in the deformation ability of the inclusions occurred when the B2O3 mass percent rose to 5% in the CaO-SiO2-Al2O3 inclusion system and to 10% in the MnO-SiO2-Al2O3 inclusion system