Fresnel incoherent correlation holography(FINCH) is a unique three-dimensional(3D) imaging technique which has the advantages of scanning-free,high resolution,and easy matching with existing mature optical systems.In ...Fresnel incoherent correlation holography(FINCH) is a unique three-dimensional(3D) imaging technique which has the advantages of scanning-free,high resolution,and easy matching with existing mature optical systems.In this article,an incoherent digital holographic spectral imaging method with high accuracy of spectral reconstruction based on liquid crystal tunable filter(LCTF) and FINCH is proposed.Using the programmable characteristics of spatial light modulator(SLM),a series of phase masks,none of whose focal lengths changes with wavelength,is designed and made.For each wavelength of LCTF output,SLM calls three phase masks with different phase constants at the corresponding wavelength,and CCD records three holograms.The spectral images obtained by this method have a constant magnification,which can achieve pixel-level image registration,restrain image registration errors,and improve spectral reconstruction accuracy.The results show that this method can not only obtain the 3D spatial information and spectral information of the object simultaneously,but also have high accuracy of spectral reconstruction and excellent color reproducibility.展开更多
Fresnel incoherent correlation holography(FINCH)is a well-established incoherent imaging technique.In FINCH,three selfinterference holograms are recorded with calculated phase differences between the two interfering,d...Fresnel incoherent correlation holography(FINCH)is a well-established incoherent imaging technique.In FINCH,three selfinterference holograms are recorded with calculated phase differences between the two interfering,differently modulated object waves and projected into a complex hologram.The object is reconstructed without the twin image and bias terms by a numerical Fresnel back propagation of the complex hologram.A modified approach to implement FINCH by a single camera shot by pre-calibrating the system involving recording of the point spread function library and reconstruction by a nonlinear cross correlation has been introduced recently.The expression of the imaging characteristics from the modulation functions in original FINCH and the modified approach by pre-calibration in spatial and polarization multiplexing schemes are reviewed.The study reveals that a reconstructing function completely independent of the function of the phase mask is required for the faithful expression of the characteristics of the modulating function in image reconstruction.In the polarization multiplexing method by non-linear cross correlation,a partial expression was observed,while in the spatial multiplexing method by non-linear cross correlation,the imaging characteristics converged towards a uniform behavior.展开更多
基金Project supported by the National Natural Science Foundation of China(Grant Nos.61505178,61307019,and 11504333)the Natural Science Foundation of Henan Province,China(Grant Nos.18A140032,15A140038,and 16A140035)。
文摘Fresnel incoherent correlation holography(FINCH) is a unique three-dimensional(3D) imaging technique which has the advantages of scanning-free,high resolution,and easy matching with existing mature optical systems.In this article,an incoherent digital holographic spectral imaging method with high accuracy of spectral reconstruction based on liquid crystal tunable filter(LCTF) and FINCH is proposed.Using the programmable characteristics of spatial light modulator(SLM),a series of phase masks,none of whose focal lengths changes with wavelength,is designed and made.For each wavelength of LCTF output,SLM calls three phase masks with different phase constants at the corresponding wavelength,and CCD records three holograms.The spectral images obtained by this method have a constant magnification,which can achieve pixel-level image registration,restrain image registration errors,and improve spectral reconstruction accuracy.The results show that this method can not only obtain the 3D spatial information and spectral information of the object simultaneously,but also have high accuracy of spectral reconstruction and excellent color reproducibility.
基金NATO grant No.SPS-985048Linkage grant No.LP190100505the Australian Research Council Discovery grant No.DP190103284。
文摘Fresnel incoherent correlation holography(FINCH)is a well-established incoherent imaging technique.In FINCH,three selfinterference holograms are recorded with calculated phase differences between the two interfering,differently modulated object waves and projected into a complex hologram.The object is reconstructed without the twin image and bias terms by a numerical Fresnel back propagation of the complex hologram.A modified approach to implement FINCH by a single camera shot by pre-calibrating the system involving recording of the point spread function library and reconstruction by a nonlinear cross correlation has been introduced recently.The expression of the imaging characteristics from the modulation functions in original FINCH and the modified approach by pre-calibration in spatial and polarization multiplexing schemes are reviewed.The study reveals that a reconstructing function completely independent of the function of the phase mask is required for the faithful expression of the characteristics of the modulating function in image reconstruction.In the polarization multiplexing method by non-linear cross correlation,a partial expression was observed,while in the spatial multiplexing method by non-linear cross correlation,the imaging characteristics converged towards a uniform behavior.