Based on a semiconductor laser (SL) with incoherent optical feedback, a novel all-optical scheme for generating tunable and broadband microwave frequency combs (MFCs) is proposed and investigated numerically. The ...Based on a semiconductor laser (SL) with incoherent optical feedback, a novel all-optical scheme for generating tunable and broadband microwave frequency combs (MFCs) is proposed and investigated numerically. The results show that, under suitable operation parameters, the SL with incoherent optical feedback can be driven to operate at a regular pulsing state, and the generated MFCs have bandwidths broader than 40 GHz within a 10 dB amplitude variation. For a fixed bias current, the line spacing (or repetition frequency) of the MFCs can be easily tuned by varying the feedback delay time and the feedback strength, and the tuning range of the line spacing increases with the increase in the bias current. The linewidth of the MFCs is sensitive to the variation of the feedback delay time and the feedback strength, and a linewidth of tens of KHz can be achieved through finely adjusting the feedback delay time and the feedback strength. In addition, mappings of amplitude variation, repetition frequency, and linewidth of MFCs in the parameter space of the feedback delay time and the feedback strength are presented.展开更多
Based on three-level exciton model,the enhanced photonic microwave signal generation by using a sole excited-state(ES)emitting quantum dot(QD)laser under both optical injection and optical feedback is numerically stud...Based on three-level exciton model,the enhanced photonic microwave signal generation by using a sole excited-state(ES)emitting quantum dot(QD)laser under both optical injection and optical feedback is numerically studied.Within the range of period-one(P1)dynamics caused by the optical injection,the variations of microwave frequency and microwave intensity with the parameters of frequency detuning and injection strength are demonstrated.It is found that the microwave frequency can be continuously tuned by adjusting the injection parameters,and the microwave intensity can be enhanced by changing the injection strength.Moreover,considering that the generated microwave has a wide linewidth,an optical feedback loop is further employed to compress the linewidth,and the effect of feedback parameters on the linewidth is investigated.It is found that with the increase of feedback strength or delay time,the linewidth is evidently decreased due to the locking effect.However,for the relatively large feedback strength or delay time,the linewidth compression effect becomes worse due to the gradually destroyed P1 dynamics.Besides,through optimizing the feedback parameters,the linewidth can be reduced by up to more than one order of magnitude for different microwave frequencies.展开更多
Role of Fano interference and incoherent pumping field on optical bistability in a four-level designed InGaN/GaN quantum dot nanostructure embedded in a unidirectional ring cavity are analyzed. It is found that intens...Role of Fano interference and incoherent pumping field on optical bistability in a four-level designed InGaN/GaN quantum dot nanostructure embedded in a unidirectional ring cavity are analyzed. It is found that intensity threshold of optical bistability can be manipulated by Fano interference. It is shown that incoherent pumping fields make the threshold of optical bistability behave differently by Fano interference. Moreover, in the presence of Fano interference the medium becomes phase-dependent. Therefore, the relative phase of applied fields can affect the behaviors of optical bistability and intensity threshold can be controlled easily.展开更多
An optical transfer function (OTF) reconstruction model is first embedded into incoherent Fourier ptychography (IFP). The leading result is a proposed algorithm that can recover both the super-resolution image and...An optical transfer function (OTF) reconstruction model is first embedded into incoherent Fourier ptychography (IFP). The leading result is a proposed algorithm that can recover both the super-resolution image and the OTF of an imaging system with unknown aberrations simultaneously. This model overcomes the difficult problem of OTF estimation that the previous IFP faces. The effectiveness of this algorithm is demonstrated by numerical simulations, and the superior reconstruction is presented. We believe that the reported algorithm can extend the original IFP for more complex conditions and may provide a solution by using structured light for characterization of optical systems' aberrations.展开更多
Based on the rate equations, we have investigated three types of chaos synchronizations in injection-locked semiconductor lasers with optical feedback. Numerical simulation shows that the synchronization can be realiz...Based on the rate equations, we have investigated three types of chaos synchronizations in injection-locked semiconductor lasers with optical feedback. Numerical simulation shows that the synchronization can be realized by the symmetric or asymmetric laser systems. Also, the influence of parameter mismatches on chaos synchronization is investigated, and the results imply that these two lasers can achieve good synchronization, with smaller tolerance of parameter mismatch existing.展开更多
In recent years,there has been a significant transformation in the field of incoherent imaging with new possibilities of compressing three-dimensional(3D)information into a two-dimensional intensity distribution witho...In recent years,there has been a significant transformation in the field of incoherent imaging with new possibilities of compressing three-dimensional(3D)information into a two-dimensional intensity distribution without two-beam interference(TBI).Most of the incoherent 3D imagers without TBI are based on scattering by a random phase mask exhibiting sharp autocorrelation and low cross-correlation along the depth.Consequently,during reconstruction,high lateral and axial resolutions are obtained.Imaging based on scattering requires an astronomical photon budget and is therefore precluded in many power-sensitive applications.In this study,a proof-of-concept 3D imaging method without TBI using deterministic fields has been demonstrated.A new reconstruction method called the Lucy-Richardson-Rosen algorithm has been developed for this imaging concept.We believe that the proposed approach will cause a paradigm-shift in the current state-of-the-art incoherent imaging,fluorescence microscopy,mid-infrared fingerprinting,astronomical imaging,and fast object recognition applications.展开更多
The effect of queuing delay of output buffer on the crosstalk property in optical packet switching nodes is investigated. The relationship between crosstalk and buffer length is obtained. From the calculation and simu...The effect of queuing delay of output buffer on the crosstalk property in optical packet switching nodes is investigated. The relationship between crosstalk and buffer length is obtained. From the calculation and simulation results, it is concluded that the crosstalk power penalty predominantly depends on the buffer length, the longer the buffer, the greater the penalty, as well as the random range of the penalty. While comparing with the effect of queuing delay, the effect of random routing path delay takes very little proportion in the total power penalty.展开更多
A theory is presented to predict that a novel type of incoherently coupled spatial soliton families, named anti-dark soliton families, can exist in cubic-quintie nonlinear media. The intensity profiles, associated pha...A theory is presented to predict that a novel type of incoherently coupled spatial soliton families, named anti-dark soliton families, can exist in cubic-quintie nonlinear media. The intensity profiles, associated phase distribution and propagation properties are discussed in detail.展开更多
Optical bistability (0t3) and optical multi-stability (OM) of a four-level A-type atomic system with two fold lower levels inside a unidirectional ring cavity is investigated. The effect of quantum interference ar...Optical bistability (0t3) and optical multi-stability (OM) of a four-level A-type atomic system with two fold lower levels inside a unidirectional ring cavity is investigated. The effect of quantum interference arising from spontaneous emission and incoherent pumping on 013 and OM is discussed. It is found that the threshold of OB and OM can be controlled by quantum interference mechanisms. In addition intensity of coupling field and the rate of an incoherent pumping field on behavior of OB and OM are then discussed.展开更多
Polarization singularities,which emerge from the incoherent superposition of two vector electric fields with the same frequency,and their evolution in free space are studied analytically and illustrated by numerical e...Polarization singularities,which emerge from the incoherent superposition of two vector electric fields with the same frequency,and their evolution in free space are studied analytically and illustrated by numerical examples.It is shown that there exist C-points,L-lines,in particular,C-lines in incoherently superimposed two-dimensional wavefields.Usually,the C-lines are unstable and disappear during the free-space propagation.The motion,pair creation-annihilation process of the emergent C-points,as well as the distortion of the L-lines may take place,and the degree of polarization of the emergent C-points varies upon propagation and may be less than 1.展开更多
Incoherent optical processing of microwave signals,where low-coherence broadband light sources are employed instead of costly mode locked lasers,has attracted great interest thanks to its wide applications in microwav...Incoherent optical processing of microwave signals,where low-coherence broadband light sources are employed instead of costly mode locked lasers,has attracted great interest thanks to its wide applications in microwave photonics filtering[1–3],arbitrary generation[4–6]and analog to digital conversion[7]。展开更多
High accuracy and time resolution optical transfer delay(OTD)measurement is highly desired in many multi-path applications,such as optical true-time-delay-based array systems and distributed optical sensors.However,th...High accuracy and time resolution optical transfer delay(OTD)measurement is highly desired in many multi-path applications,such as optical true-time-delay-based array systems and distributed optical sensors.However,the time resolution is usually limited by the frequency range of the probe signal in frequency-multiplexed OTD measurement techniques.Here,we proposed a time-resolution enhanced OTD measurement method based on incoherent optical frequency domain reflectometry(I-OFDR),where an adaptive filter is designed to suppress the spectral leakage from other paths to break the resolution limitation.A weighted least square(WLS)cost function is first established,and then an iteration approach is used to minimize the cost function.Finally,the appropriate filter parameter is obtained according to the convergence results.In a proof-of-concept experiment,the time-domain response of two optical links with a length difference of 900 ps is successfully estimated by applying a probe signal with a bandwidth of 400 MHz.The time resolution is improved by 2.78times compared to the theoretical resolution limit of the inverse discrete Fourier transform(iDFT)algorithm.In addition,the OTD measurement error is below±0.8 ps.The proposed algorithm provides a novel way to improve the measurement resolution without applying a probe signal with a large bandwidth,avoiding measurement errors induced by the dispersion effect.展开更多
基金supported by the National Natural Science Foundation of China(Grant Nos.61178011,11204248,61475127,and 61275116)the Natural Science Foundation of Chongqing City,China(Grant Nos.2012jj B40011 and 2012jj A40012)the Open Fund of the State Key Lab of Millimeter Waves of China(Grant No.K201418)
文摘Based on a semiconductor laser (SL) with incoherent optical feedback, a novel all-optical scheme for generating tunable and broadband microwave frequency combs (MFCs) is proposed and investigated numerically. The results show that, under suitable operation parameters, the SL with incoherent optical feedback can be driven to operate at a regular pulsing state, and the generated MFCs have bandwidths broader than 40 GHz within a 10 dB amplitude variation. For a fixed bias current, the line spacing (or repetition frequency) of the MFCs can be easily tuned by varying the feedback delay time and the feedback strength, and the tuning range of the line spacing increases with the increase in the bias current. The linewidth of the MFCs is sensitive to the variation of the feedback delay time and the feedback strength, and a linewidth of tens of KHz can be achieved through finely adjusting the feedback delay time and the feedback strength. In addition, mappings of amplitude variation, repetition frequency, and linewidth of MFCs in the parameter space of the feedback delay time and the feedback strength are presented.
基金the National Natural Science Foundation of China(Grant Nos.61775184 and 61875167).
文摘Based on three-level exciton model,the enhanced photonic microwave signal generation by using a sole excited-state(ES)emitting quantum dot(QD)laser under both optical injection and optical feedback is numerically studied.Within the range of period-one(P1)dynamics caused by the optical injection,the variations of microwave frequency and microwave intensity with the parameters of frequency detuning and injection strength are demonstrated.It is found that the microwave frequency can be continuously tuned by adjusting the injection parameters,and the microwave intensity can be enhanced by changing the injection strength.Moreover,considering that the generated microwave has a wide linewidth,an optical feedback loop is further employed to compress the linewidth,and the effect of feedback parameters on the linewidth is investigated.It is found that with the increase of feedback strength or delay time,the linewidth is evidently decreased due to the locking effect.However,for the relatively large feedback strength or delay time,the linewidth compression effect becomes worse due to the gradually destroyed P1 dynamics.Besides,through optimizing the feedback parameters,the linewidth can be reduced by up to more than one order of magnitude for different microwave frequencies.
文摘Role of Fano interference and incoherent pumping field on optical bistability in a four-level designed InGaN/GaN quantum dot nanostructure embedded in a unidirectional ring cavity are analyzed. It is found that intensity threshold of optical bistability can be manipulated by Fano interference. It is shown that incoherent pumping fields make the threshold of optical bistability behave differently by Fano interference. Moreover, in the presence of Fano interference the medium becomes phase-dependent. Therefore, the relative phase of applied fields can affect the behaviors of optical bistability and intensity threshold can be controlled easily.
基金Supported by the National Natural Science Foundation of China under Grant No 61205144the Research Project of National University of Defense Technology under Grant No JC13-07-01the Key Laboratory of High Power Laser and Physics of Chinese Academy of Sciences
文摘An optical transfer function (OTF) reconstruction model is first embedded into incoherent Fourier ptychography (IFP). The leading result is a proposed algorithm that can recover both the super-resolution image and the OTF of an imaging system with unknown aberrations simultaneously. This model overcomes the difficult problem of OTF estimation that the previous IFP faces. The effectiveness of this algorithm is demonstrated by numerical simulations, and the superior reconstruction is presented. We believe that the reported algorithm can extend the original IFP for more complex conditions and may provide a solution by using structured light for characterization of optical systems' aberrations.
文摘Based on the rate equations, we have investigated three types of chaos synchronizations in injection-locked semiconductor lasers with optical feedback. Numerical simulation shows that the synchronization can be realized by the symmetric or asymmetric laser systems. Also, the influence of parameter mismatches on chaos synchronization is investigated, and the results imply that these two lasers can achieve good synchronization, with smaller tolerance of parameter mismatch existing.
基金European Union’s Horizon 2020 research and innovation programme under grant agreement No.857627(CIPHR).
文摘In recent years,there has been a significant transformation in the field of incoherent imaging with new possibilities of compressing three-dimensional(3D)information into a two-dimensional intensity distribution without two-beam interference(TBI).Most of the incoherent 3D imagers without TBI are based on scattering by a random phase mask exhibiting sharp autocorrelation and low cross-correlation along the depth.Consequently,during reconstruction,high lateral and axial resolutions are obtained.Imaging based on scattering requires an astronomical photon budget and is therefore precluded in many power-sensitive applications.In this study,a proof-of-concept 3D imaging method without TBI using deterministic fields has been demonstrated.A new reconstruction method called the Lucy-Richardson-Rosen algorithm has been developed for this imaging concept.We believe that the proposed approach will cause a paradigm-shift in the current state-of-the-art incoherent imaging,fluorescence microscopy,mid-infrared fingerprinting,astronomical imaging,and fast object recognition applications.
文摘The effect of queuing delay of output buffer on the crosstalk property in optical packet switching nodes is investigated. The relationship between crosstalk and buffer length is obtained. From the calculation and simulation results, it is concluded that the crosstalk power penalty predominantly depends on the buffer length, the longer the buffer, the greater the penalty, as well as the random range of the penalty. While comparing with the effect of queuing delay, the effect of random routing path delay takes very little proportion in the total power penalty.
文摘A theory is presented to predict that a novel type of incoherently coupled spatial soliton families, named anti-dark soliton families, can exist in cubic-quintie nonlinear media. The intensity profiles, associated phase distribution and propagation properties are discussed in detail.
文摘Optical bistability (0t3) and optical multi-stability (OM) of a four-level A-type atomic system with two fold lower levels inside a unidirectional ring cavity is investigated. The effect of quantum interference arising from spontaneous emission and incoherent pumping on 013 and OM is discussed. It is found that the threshold of OB and OM can be controlled by quantum interference mechanisms. In addition intensity of coupling field and the rate of an incoherent pumping field on behavior of OB and OM are then discussed.
基金Project supported by the National Natural Science Foundation of China (Grant No. 10874125)
文摘Polarization singularities,which emerge from the incoherent superposition of two vector electric fields with the same frequency,and their evolution in free space are studied analytically and illustrated by numerical examples.It is shown that there exist C-points,L-lines,in particular,C-lines in incoherently superimposed two-dimensional wavefields.Usually,the C-lines are unstable and disappear during the free-space propagation.The motion,pair creation-annihilation process of the emergent C-points,as well as the distortion of the L-lines may take place,and the degree of polarization of the emergent C-points varies upon propagation and may be less than 1.
文摘Incoherent optical processing of microwave signals,where low-coherence broadband light sources are employed instead of costly mode locked lasers,has attracted great interest thanks to its wide applications in microwave photonics filtering[1–3],arbitrary generation[4–6]and analog to digital conversion[7]。
基金supported by the National Natural Science Foundation of China(Nos.62075095 and 62271249)the Key Research and Development Program of Jiangsu Province(No.BE2020030)。
文摘High accuracy and time resolution optical transfer delay(OTD)measurement is highly desired in many multi-path applications,such as optical true-time-delay-based array systems and distributed optical sensors.However,the time resolution is usually limited by the frequency range of the probe signal in frequency-multiplexed OTD measurement techniques.Here,we proposed a time-resolution enhanced OTD measurement method based on incoherent optical frequency domain reflectometry(I-OFDR),where an adaptive filter is designed to suppress the spectral leakage from other paths to break the resolution limitation.A weighted least square(WLS)cost function is first established,and then an iteration approach is used to minimize the cost function.Finally,the appropriate filter parameter is obtained according to the convergence results.In a proof-of-concept experiment,the time-domain response of two optical links with a length difference of 900 ps is successfully estimated by applying a probe signal with a bandwidth of 400 MHz.The time resolution is improved by 2.78times compared to the theoretical resolution limit of the inverse discrete Fourier transform(iDFT)algorithm.In addition,the OTD measurement error is below±0.8 ps.The proposed algorithm provides a novel way to improve the measurement resolution without applying a probe signal with a large bandwidth,avoiding measurement errors induced by the dispersion effect.