We present a new definition (Evolving Solutions) for Multi-objective Optimization Problem (MOP) to answer the basic question (what's multi-objective optimal solution?) and advance an asynchronous evolutionary mode...We present a new definition (Evolving Solutions) for Multi-objective Optimization Problem (MOP) to answer the basic question (what's multi-objective optimal solution?) and advance an asynchronous evolutionary model (MINT Model) to solve MOPs. The new theory is based on our understanding of the natural evolution and the analysis of the difference between natural evolution and MOP, thus it is not only different from the Converting Optimization but also different from Pareto Optimization. Some tests prove that our new theory may conquer disadvantages of the upper two methods to some extent.展开更多
This paper presents a numerical algorithm tuning aircraft landing gear control system with three objectives,including reducing relative vibration, reducing hydraulic strut force and controlling energy consumption. Sli...This paper presents a numerical algorithm tuning aircraft landing gear control system with three objectives,including reducing relative vibration, reducing hydraulic strut force and controlling energy consumption. Sliding mode control is applied to the vibration control of a simplified landing gear model with uncertainty. A two-stage generalized cell mapping algorithm is applied to search the Pareto set with gradient-free scheme. Drop test simulations over uneven runway show that the vibration and force interaction can be considerably reduced, and the Pareto optimum form a tight range in time domain.展开更多
A modified multi-objective particle swarm optimization method is proposed for obtaining Pareto-optimal solutions effectively. Different from traditional multiobjective particle swarm optimization methods, Kriging meta...A modified multi-objective particle swarm optimization method is proposed for obtaining Pareto-optimal solutions effectively. Different from traditional multiobjective particle swarm optimization methods, Kriging meta-models and the trapezoid index are introduced and integrated with the traditional one. Kriging meta-models are built to match expensive or black-box functions. By applying Kriging meta-models, function evaluation numbers are decreased and the boundary Pareto-optimal solutions are identified rapidly. For bi-objective optimization problems, the trapezoid index is calculated as the sum of the trapezoid’s area formed by the Pareto-optimal solutions and one objective axis. It can serve as a measure whether the Pareto-optimal solutions converge to the Pareto front. Illustrative examples indicate that to obtain Paretooptimal solutions, the method proposed needs fewer function evaluations than the traditional multi-objective particle swarm optimization method and the non-dominated sorting genetic algorithm II method, and both the accuracy and the computational efficiency are improved. The proposed method is also applied to the design of a deepwater composite riser example in which the structural performances are calculated by numerical analysis. The design aim was to enhance the tension strength and minimize the cost. Under the buckling constraint, the optimal trade-off of tensile strength and material volume is obtained. The results demonstrated that the proposed method can effec tively deal with multi-objective optimizations with black-box functions.展开更多
<div style="text-align:justify;"> In view of the complex problems that freight train ATO (automatic train operation) needs to comprehensively consider punctuality, energy saving and safety, a dynamics ...<div style="text-align:justify;"> In view of the complex problems that freight train ATO (automatic train operation) needs to comprehensively consider punctuality, energy saving and safety, a dynamics model of the freight train operation process is established based on the safety and the freight train dynamics model in the process of its operation. The algorithm of combining elite competition strategy with multi-objective particle swarm optimization technology is introduced, and the winning particles are obtained through the competition between two elite particles to guide the update of other particles, so as to balance the convergence and distribution of multi-objective particle swarm optimization. The performance comparison experimental results verify the superiority of the proposed algorithm. The simulation experiments of the actual line verify the feasibility of the model and the effectiveness of the proposed algorithm. </div>展开更多
Based on one-dimensional water quality model and nonlinear programming, the point source pollution reduction model with multi-objective optimization has been established. To achieve cost effective and best water quali...Based on one-dimensional water quality model and nonlinear programming, the point source pollution reduction model with multi-objective optimization has been established. To achieve cost effective and best water quality, for us to optimize the process, we set pollutant concentration and total amount control as constraints and put forward the optimal pollution reduction control strategy by simulating and optimizing water quality monitoring data from the target section. Integrated with scenario analysis, COD and ammonia nitrogen pollution optimization wasstudiedin objective function area from Mountain Maan of Acheng to Fuerjia Bridge along Ashe River. The results showed that COD and NH3-N contribution has been greatly reduced to AsheRiverby 49.6% and 32.7% respectively. Therefore, multi-objective optimization by nonlinear programming for water pollution control can make source sewage optimization fairly and reasonably, and the optimal strategies of pollution emission are presented.展开更多
For the coach industry, rapid modeling and efficient optimization methods are desirable for structure modeling and optimization based on simplified structures, especially for use early in the concept phase and with ca...For the coach industry, rapid modeling and efficient optimization methods are desirable for structure modeling and optimization based on simplified structures, especially for use early in the concept phase and with capabilities of accurately expressing the mechanical properties of structure and with flexible section forms. However, the present dimension-based methods cannot easily meet these requirements. To achieve these goals, the property-based modeling (PBM) beam modeling method is studied based on the PBM theory and in conjunction with the characteristics of coach structure of taking beam as the main component. For a beam component of concrete length, its mechanical characteristics are primarily affected by the section properties. Four section parameters are adopted to describe the mechanical properties of a beam, including the section area, the principal moments of inertia about the two principal axles, and the torsion constant of the section. Based on the equivalent stiffness strategy, expressions for the above section parameters are derived, and the PBM beam element is implemented in HyperMesh software. A case is realized using this method, in which the structure of a passenger coach is simplified. The model precision is validated by comparing the basic performance of the total structure with that of the original structure, including the bending and torsion stiffness and the first-order bending and torsional modal frequencies. Sensitivity analysis is conducted to choose design variables. The optimal Latin hypercube experiment design is adopted to sample the test points, and polynomial response surfaces are used to fit these points. To improve the bending and torsion stiffness and the first-order torsional frequency and taking the allowable maximum stresses of the braking and left turning conditions as constraints, the multi-objective optimization of the structure is conducted using the NSGA-II genetic algorithm on the ISIGHT platform. The result of the Pareto solution set is acquired, and the selection strategy of the final solution is discussed. The case study demonstrates that the mechanical performances of the structure can be well-modeled and simulated by PBM beam. Because of the merits of fewer parameters and convenience of use, this method is suitable to be applied in the concept stage. Another merit is that the optimization results are the requirements for the mechanical performance of the beam section instead of those of the shape and dimensions, bringing flexibility to the succeeding design.展开更多
With the rapid and large-scale development of renewable energy, the lack of new energy power transportation or consumption, and the shortage of grid peak-shifting ability have become increasingly serious. Aiming to th...With the rapid and large-scale development of renewable energy, the lack of new energy power transportation or consumption, and the shortage of grid peak-shifting ability have become increasingly serious. Aiming to the severe wind power curtailment issue, the characteristics of interactive load are studied upon the traditional day-ahead dispatch model to mitigate the influence of wind power fluctuation. A multi-objective optimal dispatch model with the minimum operating cost and power losses is built. Optimal power flow distribution is available when both generation and demand side participate in the resource allocation. The quantum particle swarm optimization (QPSO) algorithm is applied to convert multi-objective optimization problem into single objective optimization problem. The simulation results of IEEE 30-bus system verify that the proposed method can effectively reduce the operating cost and grid loss simultaneously enhancing the consumption of wind power.展开更多
This paper presents an optimal vehicle and seat suspension design for a half-car vehicle model to reduce human-body vibration (whole-body vibration). A genetic algorithm is applied to search for the optimal parameters...This paper presents an optimal vehicle and seat suspension design for a half-car vehicle model to reduce human-body vibration (whole-body vibration). A genetic algorithm is applied to search for the optimal parameters of the seat and vehicle suspension. The desired objective is proposed as the minimization of a multi-objective function formed by the combination of seat suspension working space (seat suspension deflection), head acceleration, and seat mass acceleration to achieve the best comfort of the driver. With the aid of Matlab/Simulink software, a simulation model is achieved. In solving this problem, the genetic algorithms have consistently found near-optimal solutions within specified parameters ranges for several independent runs. For validation, the solution obtained by GA was compared to the ones of the passive suspensions through sinusoidal excitation of the seat suspension system for the currently used suspension systems.展开更多
The compliant vertical access riser (CVAR) is a new riser concept with good compliance;it can significantly reduce operating costs by eliminating the need for additional machines to operate wells directly on the platf...The compliant vertical access riser (CVAR) is a new riser concept with good compliance;it can significantly reduce operating costs by eliminating the need for additional machines to operate wells directly on the platform.In this study,we determined the optimal riser parameters in terms of the stress and riser weight by optimizing the CVAR,and we compared the optimization resuits.A two-dimensional nonlinear static CVAR model was deduced according to the principles of virtual work and variation,and the model was verified using MATLAB.Design of experiments and Kriging method were used to reduce the number of sample calculations and improve the modeling accuracy.An appropriate selection of the multi-objective optimization problem (MOP) and the non-dominated sorting genetic algorithm helped to optimize the CVAR design.The non-dominated sorting genetic algorithm Ⅱ was used to solve the Pareto frontier of the optimization model in order to provide decision makers with more choices for the optimization results.After optimizing the riser parameters,the geometry of the riser was smoother,and the stress and stress differences were greatly reduced;the maximum equivalent stresses at the top and bottom were reduced by 36.6% and 44%,respectively.In addition,the stress difference in the buoyancy block area was reduced by 20.9%,and the weight of the riser was increased significantly by 28.1%.展开更多
Persistent low temperatures in autumn and winter have a huge impact on crops,and greenhouses rely on solar radiation and heating equipment to meet the required indoor temperature.But the energy cost of frequent operat...Persistent low temperatures in autumn and winter have a huge impact on crops,and greenhouses rely on solar radiation and heating equipment to meet the required indoor temperature.But the energy cost of frequent operation of the actuators is exceptionally high.The relationship between greenhouse environmental control accuracy and energy consumption is one of the key issues faced in greenhouse research.In this study,a non-linear model predictive control method with an improved objective function was proposed.The improved objective function used tolerance intervals and boundary constraints to optimize the objective evaluation.The nonlinear model predictive control(NMPC)controller design was based on the wavelet neural network(WNN)data-driven model and applied the interior point method to solve the optimal solution of the objective function control,thus balancing the contradiction between energy consumption and control precision.The simulation results showed that the improved NMPC method reduced energy consumption by 21.02%and 9.54%compared with the model predictive control and regular NMPC,which proved the method achieved good results in a low-temperature environment.This research can provide an important reference for the field as it offers a more efficient approach to managing greenhouse climates,potentially leading to substantial energy savings and enhanced sustainability in agricultural practices.展开更多
In the previous papers,Quantum-inspired multi-objective evolutionary algorithm(QMEA) was proved to be better than conventional genetic algorithms for multi-objective optimization problem.To improve the quality of the ...In the previous papers,Quantum-inspired multi-objective evolutionary algorithm(QMEA) was proved to be better than conventional genetic algorithms for multi-objective optimization problem.To improve the quality of the non-dominated set as well as the diversity of population in multi-objective problems,in this paper,a Novel Cloud -based quantum -inspired multi-objective evolutionary Algorithm(CQMEA) is proposed.CQMEA is proposed by employing the concept and principles of Cloud theory.The algorithm utilizes the random orientation and stability of the cloud model,uses a self-adaptive mechanism with cloud model of Quantum gates updating strategy to implement global search efficient.By using the self-adaptive mechanism and the better solution which is determined by the membership function uncertainly,Compared with several well-known algorithms such as NSGA-Ⅱ,QMEA.Experimental results show that(CQMEA) is more effective than QMEA and NSGA -Ⅱ.展开更多
Crop planting structure optimization is a signi ficant way to increase agricultural economic bene fits and improve agricultural water management. The complexities of fluctuating stream conditions, varying economic pro...Crop planting structure optimization is a signi ficant way to increase agricultural economic bene fits and improve agricultural water management. The complexities of fluctuating stream conditions, varying economic pro fits, and uncertainties and errors in estimated modeling parameters, as well as the complexities among economic, social, natural resources and environmental aspects, have led to the necessity of developing optimization models for crop planting structure which consider uncertainty and multi-objectives elements. In this study,three single-objective programming models under uncertainty for crop planting structure optimization were developed, including an interval linear programming model, an inexact fuzzy chance-constrained programming(IFCCP) model and an inexact fuzzy linear programming(IFLP) model. Each of the three models takes grayness into account. Moreover, the IFCCP model considers fuzzy uncertainty of parameters/variables and stochastic characteristics of constraints, while the IFLP model takes into account the fuzzy uncertainty of both constraints and objective functions. To satisfy the sustainable development of crop planting structure planning, a fuzzy-optimizationtheory-based fuzzy linear multi-objective programming model was developed, which is capable of re flecting both uncertainties and multi-objective. In addition, a multiobjective fractional programming model for crop structure optimization was also developed to quantitatively express the multi-objective in one optimization model with the numerator representing maximum economic bene fits and the denominator representing minimum crop planting area allocation. These models better re flect actual situations,considering the uncertainties and multi-objectives of crop planting structure optimization systems. The five models developed were then applied to a real case study in MinqinCounty, north-west China. The advantages, the applicable conditions and the solution methods of each model are expounded. Detailed analysis of results of each model and their comparisons demonstrate the feasibility and applicability of the models developed, therefore decision makers can choose the appropriate model when making decisions.展开更多
Evolutionary algorithm is an effective strategy for solving many-objective optimization problems.At present,most evolutionary many-objective algorithms are designed for solving many-objective optimization problems whe...Evolutionary algorithm is an effective strategy for solving many-objective optimization problems.At present,most evolutionary many-objective algorithms are designed for solving many-objective optimization problems where the objectives conflict with each other.In some cases,however,the objectives are not always in conflict.It consists of multiple independent objective subsets and the relationship between objectives is unknown in advance.The classical evolutionary many-objective algorithms may not be able to effectively solve such problems.Accordingly,we propose an objective set decomposition strategy based on the partial set covering model.It decomposes the objectives into a collection of objective subsets to preserve the nondominance relationship as much as possible.An optimization subproblem is defined on each objective subset.A coevolutionary algorithm is presented to optimize all subproblems simultaneously,in which a nondominance ranking is presented to interact information among these sub-populations.The proposed algorithm is compared with five popular many-objective evolutionary algorithms and four objective set decomposition based evolutionary algorithms on a series of test problems.Numerical experiments demonstrate that the proposed algorithm can achieve promising results for the many-objective optimization problems with independent and harmonious objectives.展开更多
We developed a parallel object relational DBMS named PORLES. It uses BSP model as its parallel computing model, and monoid calculus as its basis of data model. In this paper, we introduce its data model, parallel que...We developed a parallel object relational DBMS named PORLES. It uses BSP model as its parallel computing model, and monoid calculus as its basis of data model. In this paper, we introduce its data model, parallel query optimization, transaction processing system and parallel access method in detail.展开更多
Model updating for aircraft in a high temperature environment(HTE)is proposed based on the hierarchical method.With this method,the problem can be decomposed into temperature field updating and dynamic structural upda...Model updating for aircraft in a high temperature environment(HTE)is proposed based on the hierarchical method.With this method,the problem can be decomposed into temperature field updating and dynamic structural updating.In order to improve the estimation accuracy,the model updating problem is turned into a multi-objective optimization problem by constructing the objective function which combined with residues of modal frequency and effective modal mass.Then the metamodeling,support vector regression(SVR)is introduced to improve the optimization efficiency,and the solution can be determined by adaptive weighted-sum method(AWS).Finally,the proposed method is tested on a finite element(FE)model of a reentry vehicle model.The results show that the multi-objective model updating method in HTE can identify the input parameters of the temperature field and structure with good accuracy.展开更多
In this paper, we propose a framework that uses localization for multi-objective optimization to simultaneously guide an evolutionary algorithm in both the decision and objective spaces. The localization is built usin...In this paper, we propose a framework that uses localization for multi-objective optimization to simultaneously guide an evolutionary algorithm in both the decision and objective spaces. The localization is built using a limited number of adaptive spheres (local models) in the decision space. These spheres axe usually guided, using some direction information, in the decision space towards the areas with non-dominated solutions. We use a second mechanism to adjust the spheres to specialize on different parts of the Paxeto front by using a guided dominance technique in the objective space. Through this interleaved guidance in both spaces, the spheres will be guided towards different parts of the Paxeto front while also exploring the decision space efficiently. The experimental results showed good performance for the local models using this dual guidance, in comparison with their original version.展开更多
基金Supported by the National Natural Science Foundation of China(70071042,60073043,60133010)
文摘We present a new definition (Evolving Solutions) for Multi-objective Optimization Problem (MOP) to answer the basic question (what's multi-objective optimal solution?) and advance an asynchronous evolutionary model (MINT Model) to solve MOPs. The new theory is based on our understanding of the natural evolution and the analysis of the difference between natural evolution and MOP, thus it is not only different from the Converting Optimization but also different from Pareto Optimization. Some tests prove that our new theory may conquer disadvantages of the upper two methods to some extent.
基金Supported by the National Natural Science Foundation of China(No.11172197 and No.11332008)a key-project grant from the Natural Science Foundation of Tianjin(No.010413595)
文摘This paper presents a numerical algorithm tuning aircraft landing gear control system with three objectives,including reducing relative vibration, reducing hydraulic strut force and controlling energy consumption. Sliding mode control is applied to the vibration control of a simplified landing gear model with uncertainty. A two-stage generalized cell mapping algorithm is applied to search the Pareto set with gradient-free scheme. Drop test simulations over uneven runway show that the vibration and force interaction can be considerably reduced, and the Pareto optimum form a tight range in time domain.
基金supported by the National Natural Science Foundation of China(Grant 11572134)
文摘A modified multi-objective particle swarm optimization method is proposed for obtaining Pareto-optimal solutions effectively. Different from traditional multiobjective particle swarm optimization methods, Kriging meta-models and the trapezoid index are introduced and integrated with the traditional one. Kriging meta-models are built to match expensive or black-box functions. By applying Kriging meta-models, function evaluation numbers are decreased and the boundary Pareto-optimal solutions are identified rapidly. For bi-objective optimization problems, the trapezoid index is calculated as the sum of the trapezoid’s area formed by the Pareto-optimal solutions and one objective axis. It can serve as a measure whether the Pareto-optimal solutions converge to the Pareto front. Illustrative examples indicate that to obtain Paretooptimal solutions, the method proposed needs fewer function evaluations than the traditional multi-objective particle swarm optimization method and the non-dominated sorting genetic algorithm II method, and both the accuracy and the computational efficiency are improved. The proposed method is also applied to the design of a deepwater composite riser example in which the structural performances are calculated by numerical analysis. The design aim was to enhance the tension strength and minimize the cost. Under the buckling constraint, the optimal trade-off of tensile strength and material volume is obtained. The results demonstrated that the proposed method can effec tively deal with multi-objective optimizations with black-box functions.
文摘<div style="text-align:justify;"> In view of the complex problems that freight train ATO (automatic train operation) needs to comprehensively consider punctuality, energy saving and safety, a dynamics model of the freight train operation process is established based on the safety and the freight train dynamics model in the process of its operation. The algorithm of combining elite competition strategy with multi-objective particle swarm optimization technology is introduced, and the winning particles are obtained through the competition between two elite particles to guide the update of other particles, so as to balance the convergence and distribution of multi-objective particle swarm optimization. The performance comparison experimental results verify the superiority of the proposed algorithm. The simulation experiments of the actual line verify the feasibility of the model and the effectiveness of the proposed algorithm. </div>
文摘Based on one-dimensional water quality model and nonlinear programming, the point source pollution reduction model with multi-objective optimization has been established. To achieve cost effective and best water quality, for us to optimize the process, we set pollutant concentration and total amount control as constraints and put forward the optimal pollution reduction control strategy by simulating and optimizing water quality monitoring data from the target section. Integrated with scenario analysis, COD and ammonia nitrogen pollution optimization wasstudiedin objective function area from Mountain Maan of Acheng to Fuerjia Bridge along Ashe River. The results showed that COD and NH3-N contribution has been greatly reduced to AsheRiverby 49.6% and 32.7% respectively. Therefore, multi-objective optimization by nonlinear programming for water pollution control can make source sewage optimization fairly and reasonably, and the optimal strategies of pollution emission are presented.
文摘For the coach industry, rapid modeling and efficient optimization methods are desirable for structure modeling and optimization based on simplified structures, especially for use early in the concept phase and with capabilities of accurately expressing the mechanical properties of structure and with flexible section forms. However, the present dimension-based methods cannot easily meet these requirements. To achieve these goals, the property-based modeling (PBM) beam modeling method is studied based on the PBM theory and in conjunction with the characteristics of coach structure of taking beam as the main component. For a beam component of concrete length, its mechanical characteristics are primarily affected by the section properties. Four section parameters are adopted to describe the mechanical properties of a beam, including the section area, the principal moments of inertia about the two principal axles, and the torsion constant of the section. Based on the equivalent stiffness strategy, expressions for the above section parameters are derived, and the PBM beam element is implemented in HyperMesh software. A case is realized using this method, in which the structure of a passenger coach is simplified. The model precision is validated by comparing the basic performance of the total structure with that of the original structure, including the bending and torsion stiffness and the first-order bending and torsional modal frequencies. Sensitivity analysis is conducted to choose design variables. The optimal Latin hypercube experiment design is adopted to sample the test points, and polynomial response surfaces are used to fit these points. To improve the bending and torsion stiffness and the first-order torsional frequency and taking the allowable maximum stresses of the braking and left turning conditions as constraints, the multi-objective optimization of the structure is conducted using the NSGA-II genetic algorithm on the ISIGHT platform. The result of the Pareto solution set is acquired, and the selection strategy of the final solution is discussed. The case study demonstrates that the mechanical performances of the structure can be well-modeled and simulated by PBM beam. Because of the merits of fewer parameters and convenience of use, this method is suitable to be applied in the concept stage. Another merit is that the optimization results are the requirements for the mechanical performance of the beam section instead of those of the shape and dimensions, bringing flexibility to the succeeding design.
文摘With the rapid and large-scale development of renewable energy, the lack of new energy power transportation or consumption, and the shortage of grid peak-shifting ability have become increasingly serious. Aiming to the severe wind power curtailment issue, the characteristics of interactive load are studied upon the traditional day-ahead dispatch model to mitigate the influence of wind power fluctuation. A multi-objective optimal dispatch model with the minimum operating cost and power losses is built. Optimal power flow distribution is available when both generation and demand side participate in the resource allocation. The quantum particle swarm optimization (QPSO) algorithm is applied to convert multi-objective optimization problem into single objective optimization problem. The simulation results of IEEE 30-bus system verify that the proposed method can effectively reduce the operating cost and grid loss simultaneously enhancing the consumption of wind power.
文摘This paper presents an optimal vehicle and seat suspension design for a half-car vehicle model to reduce human-body vibration (whole-body vibration). A genetic algorithm is applied to search for the optimal parameters of the seat and vehicle suspension. The desired objective is proposed as the minimization of a multi-objective function formed by the combination of seat suspension working space (seat suspension deflection), head acceleration, and seat mass acceleration to achieve the best comfort of the driver. With the aid of Matlab/Simulink software, a simulation model is achieved. In solving this problem, the genetic algorithms have consistently found near-optimal solutions within specified parameters ranges for several independent runs. For validation, the solution obtained by GA was compared to the ones of the passive suspensions through sinusoidal excitation of the seat suspension system for the currently used suspension systems.
基金funded by the National Natural Science Foundation of China (No. 51579245)the National Key R&D Program of China (No. 2016YFC0303 800)
文摘The compliant vertical access riser (CVAR) is a new riser concept with good compliance;it can significantly reduce operating costs by eliminating the need for additional machines to operate wells directly on the platform.In this study,we determined the optimal riser parameters in terms of the stress and riser weight by optimizing the CVAR,and we compared the optimization resuits.A two-dimensional nonlinear static CVAR model was deduced according to the principles of virtual work and variation,and the model was verified using MATLAB.Design of experiments and Kriging method were used to reduce the number of sample calculations and improve the modeling accuracy.An appropriate selection of the multi-objective optimization problem (MOP) and the non-dominated sorting genetic algorithm helped to optimize the CVAR design.The non-dominated sorting genetic algorithm Ⅱ was used to solve the Pareto frontier of the optimization model in order to provide decision makers with more choices for the optimization results.After optimizing the riser parameters,the geometry of the riser was smoother,and the stress and stress differences were greatly reduced;the maximum equivalent stresses at the top and bottom were reduced by 36.6% and 44%,respectively.In addition,the stress difference in the buoyancy block area was reduced by 20.9%,and the weight of the riser was increased significantly by 28.1%.
基金supported by the National Natural Science Foundation of China(Grant.No.31901400)the Fundamental Research Funds for the Provincial Universities of Zhejiang(Grant.No.2023YW09).
文摘Persistent low temperatures in autumn and winter have a huge impact on crops,and greenhouses rely on solar radiation and heating equipment to meet the required indoor temperature.But the energy cost of frequent operation of the actuators is exceptionally high.The relationship between greenhouse environmental control accuracy and energy consumption is one of the key issues faced in greenhouse research.In this study,a non-linear model predictive control method with an improved objective function was proposed.The improved objective function used tolerance intervals and boundary constraints to optimize the objective evaluation.The nonlinear model predictive control(NMPC)controller design was based on the wavelet neural network(WNN)data-driven model and applied the interior point method to solve the optimal solution of the objective function control,thus balancing the contradiction between energy consumption and control precision.The simulation results showed that the improved NMPC method reduced energy consumption by 21.02%and 9.54%compared with the model predictive control and regular NMPC,which proved the method achieved good results in a low-temperature environment.This research can provide an important reference for the field as it offers a more efficient approach to managing greenhouse climates,potentially leading to substantial energy savings and enhanced sustainability in agricultural practices.
基金Supported by the National Natural Science Foundation of China under Grant No.60903168the Scientific Research Fund of Hunan Provincial Education Department of China under Grant No.10B062Guangdong University of Petrochemical Technology Youth innovative personnel training project(NO 2010YC09)
文摘In the previous papers,Quantum-inspired multi-objective evolutionary algorithm(QMEA) was proved to be better than conventional genetic algorithms for multi-objective optimization problem.To improve the quality of the non-dominated set as well as the diversity of population in multi-objective problems,in this paper,a Novel Cloud -based quantum -inspired multi-objective evolutionary Algorithm(CQMEA) is proposed.CQMEA is proposed by employing the concept and principles of Cloud theory.The algorithm utilizes the random orientation and stability of the cloud model,uses a self-adaptive mechanism with cloud model of Quantum gates updating strategy to implement global search efficient.By using the self-adaptive mechanism and the better solution which is determined by the membership function uncertainly,Compared with several well-known algorithms such as NSGA-Ⅱ,QMEA.Experimental results show that(CQMEA) is more effective than QMEA and NSGA -Ⅱ.
基金founded by the Doctoral Programs Foundation of the Ministry of Education of China (20130008110021)the National Natural Science Foundation of China (91425302, 41271536)International Science and Technology Cooperation Program of China (2013DFG70990)
文摘Crop planting structure optimization is a signi ficant way to increase agricultural economic bene fits and improve agricultural water management. The complexities of fluctuating stream conditions, varying economic pro fits, and uncertainties and errors in estimated modeling parameters, as well as the complexities among economic, social, natural resources and environmental aspects, have led to the necessity of developing optimization models for crop planting structure which consider uncertainty and multi-objectives elements. In this study,three single-objective programming models under uncertainty for crop planting structure optimization were developed, including an interval linear programming model, an inexact fuzzy chance-constrained programming(IFCCP) model and an inexact fuzzy linear programming(IFLP) model. Each of the three models takes grayness into account. Moreover, the IFCCP model considers fuzzy uncertainty of parameters/variables and stochastic characteristics of constraints, while the IFLP model takes into account the fuzzy uncertainty of both constraints and objective functions. To satisfy the sustainable development of crop planting structure planning, a fuzzy-optimizationtheory-based fuzzy linear multi-objective programming model was developed, which is capable of re flecting both uncertainties and multi-objective. In addition, a multiobjective fractional programming model for crop structure optimization was also developed to quantitatively express the multi-objective in one optimization model with the numerator representing maximum economic bene fits and the denominator representing minimum crop planting area allocation. These models better re flect actual situations,considering the uncertainties and multi-objectives of crop planting structure optimization systems. The five models developed were then applied to a real case study in MinqinCounty, north-west China. The advantages, the applicable conditions and the solution methods of each model are expounded. Detailed analysis of results of each model and their comparisons demonstrate the feasibility and applicability of the models developed, therefore decision makers can choose the appropriate model when making decisions.
基金supported in part by the National Natural Science Foundation of China(No.62172110)the Natural Science Foundation of Guangdong Province(Nos.2021A1515011839 and 2022A1515010130)the Programme of Science and Technology of Guangdong Province(No.2021A0505110004).
文摘Evolutionary algorithm is an effective strategy for solving many-objective optimization problems.At present,most evolutionary many-objective algorithms are designed for solving many-objective optimization problems where the objectives conflict with each other.In some cases,however,the objectives are not always in conflict.It consists of multiple independent objective subsets and the relationship between objectives is unknown in advance.The classical evolutionary many-objective algorithms may not be able to effectively solve such problems.Accordingly,we propose an objective set decomposition strategy based on the partial set covering model.It decomposes the objectives into a collection of objective subsets to preserve the nondominance relationship as much as possible.An optimization subproblem is defined on each objective subset.A coevolutionary algorithm is presented to optimize all subproblems simultaneously,in which a nondominance ranking is presented to interact information among these sub-populations.The proposed algorithm is compared with five popular many-objective evolutionary algorithms and four objective set decomposition based evolutionary algorithms on a series of test problems.Numerical experiments demonstrate that the proposed algorithm can achieve promising results for the many-objective optimization problems with independent and harmonious objectives.
文摘We developed a parallel object relational DBMS named PORLES. It uses BSP model as its parallel computing model, and monoid calculus as its basis of data model. In this paper, we introduce its data model, parallel query optimization, transaction processing system and parallel access method in detail.
基金supported by the National Natural Science Foundation of China(No.11472132)the Fundamental Research Funds for Central University (No. NJ20160050)the Fundamental Research Funds for Central University(No.NJ2016098)
文摘Model updating for aircraft in a high temperature environment(HTE)is proposed based on the hierarchical method.With this method,the problem can be decomposed into temperature field updating and dynamic structural updating.In order to improve the estimation accuracy,the model updating problem is turned into a multi-objective optimization problem by constructing the objective function which combined with residues of modal frequency and effective modal mass.Then the metamodeling,support vector regression(SVR)is introduced to improve the optimization efficiency,and the solution can be determined by adaptive weighted-sum method(AWS).Finally,the proposed method is tested on a finite element(FE)model of a reentry vehicle model.The results show that the multi-objective model updating method in HTE can identify the input parameters of the temperature field and structure with good accuracy.
基金This work is supported by the Australian Research Council(ARC)Centre for Complex Systems under Grant No.CEO0348249the Postgraduate Research Student Overseas Grant from UNSW@ADFA,University of New South Wales.
文摘In this paper, we propose a framework that uses localization for multi-objective optimization to simultaneously guide an evolutionary algorithm in both the decision and objective spaces. The localization is built using a limited number of adaptive spheres (local models) in the decision space. These spheres axe usually guided, using some direction information, in the decision space towards the areas with non-dominated solutions. We use a second mechanism to adjust the spheres to specialize on different parts of the Paxeto front by using a guided dominance technique in the objective space. Through this interleaved guidance in both spaces, the spheres will be guided towards different parts of the Paxeto front while also exploring the decision space efficiently. The experimental results showed good performance for the local models using this dual guidance, in comparison with their original version.