Incremental forming is a novel die-less sheet forming process. There is a need for special means to retain lubricant at the tool/sheet interface during forming. To fulfillthe stated aim, a porous ceramic film was deve...Incremental forming is a novel die-less sheet forming process. There is a need for special means to retain lubricant at the tool/sheet interface during forming. To fulfillthe stated aim, a porous ceramic film was developed on pure Ti substrate, and it was done through an electrochemical depsition process known as plasma electrolytic oxidation. The film with preferred pore size could be realized after several attempts by varying the processing parameters. In order to characterize the film, a variety of tests including rnicrostructure, film-substrate bond strength and tribological properties tests were conducted. On-job performance of the film was also examined by forming Ti components employing a range of forming conditions. It was found that the proposed method of lubrication was effective, and the plasma eletrolytic oxidation process can be employed to fabricate films on pure Ti sheet to provide means of lubrication during incremental forming.展开更多
Size effects make traditional bending theories infeasible in analyzing the springback behavior of H80 foils in the similarity bending experiment. It is observed that there is a certain critical thickness value, which ...Size effects make traditional bending theories infeasible in analyzing the springback behavior of H80 foils in the similarity bending experiment. It is observed that there is a certain critical thickness value, which divides the change trend of springback amount of foils into two opposite parts. In order to reveal the reason for size effects on the springback behavior of H80 foils, the method of hardness increment characterization was applied to describe the deformation distribution of foils. The competition between strengthening effect of geometrically necessary dislocations and weakening effect of surface grains determines the change trend of springback amount with foil thickness. When the thickness of foils is large, the weakening effects dominate the material behavior, resulting in that the springback amount decreases with the decrease in foil thickness. However, when the foil thickness is small, the strengthening effects dominate the springback tendency, leading to a sharp increase in the springback amount. Furthermore, the deformation distribution is disturbed due to the enhanced effects of individual grain heterogeneity with the decrease in the thickness of foils, leading to the large scatter of springback angle after unloading.展开更多
文摘Incremental forming is a novel die-less sheet forming process. There is a need for special means to retain lubricant at the tool/sheet interface during forming. To fulfillthe stated aim, a porous ceramic film was developed on pure Ti substrate, and it was done through an electrochemical depsition process known as plasma electrolytic oxidation. The film with preferred pore size could be realized after several attempts by varying the processing parameters. In order to characterize the film, a variety of tests including rnicrostructure, film-substrate bond strength and tribological properties tests were conducted. On-job performance of the film was also examined by forming Ti components employing a range of forming conditions. It was found that the proposed method of lubrication was effective, and the plasma eletrolytic oxidation process can be employed to fabricate films on pure Ti sheet to provide means of lubrication during incremental forming.
基金financially supported by the Foundation of Suzhou University of Science and Technology(No.XKQ2017005)
文摘Size effects make traditional bending theories infeasible in analyzing the springback behavior of H80 foils in the similarity bending experiment. It is observed that there is a certain critical thickness value, which divides the change trend of springback amount of foils into two opposite parts. In order to reveal the reason for size effects on the springback behavior of H80 foils, the method of hardness increment characterization was applied to describe the deformation distribution of foils. The competition between strengthening effect of geometrically necessary dislocations and weakening effect of surface grains determines the change trend of springback amount with foil thickness. When the thickness of foils is large, the weakening effects dominate the material behavior, resulting in that the springback amount decreases with the decrease in foil thickness. However, when the foil thickness is small, the strengthening effects dominate the springback tendency, leading to a sharp increase in the springback amount. Furthermore, the deformation distribution is disturbed due to the enhanced effects of individual grain heterogeneity with the decrease in the thickness of foils, leading to the large scatter of springback angle after unloading.