Based on the elasto-plastic mechanics and continuum damage theory, a yield criterion related to spherical tensor of stress is proposed to describe the mixed hardening of damaged orthotropic materials. Its dimensionles...Based on the elasto-plastic mechanics and continuum damage theory, a yield criterion related to spherical tensor of stress is proposed to describe the mixed hardening of damaged orthotropic materials. Its dimensionless form is isomorphic with the Mises criterion for isotropic materials. Furthermore, the incremental elasto-plastic damage constitutive equations and damage evolution equations are established. Based on the classical nonlinear plate theory, the incremental nonlinear equilibrium equations of orthotropic thin plates considering damage effect are obtained, and solved with the finite difference and iteration methods. In the numerical examples, the effects of damage evolution and initial deflection on the elasto-plastic postbuckling of orthotropic plates are discussed in detail.展开更多
A numerical model was established to calculate the cycle feed rate through studying the case of a cold pilger mill with the 304 stainless steel pipe. Firstly, the precise constitutive equation of 304 stainless steel w...A numerical model was established to calculate the cycle feed rate through studying the case of a cold pilger mill with the 304 stainless steel pipe. Firstly, the precise constitutive equation of 304 stainless steel was obtained through nonlinearly fitting the true stress-strain data from unidirectional tensile test. Then, the numerical method to calculate the equivalent deformation was determined according to the plastic deformation feature of the steel tube during cold rolling and the incremental theory. Finally, the cycle feed rate of cold roiled 304 stainless steel pipe was extracted when formulating springback through utilizing above results comprehensively and unloading law. Stress state, metal flow, finished pipe size and distribution of residual stress were obtained by finite element method to calculate the whole rolling process when the cycle feed rate was 10 mm, and the optimized model was verified through finished pipe size.展开更多
基金Project supported by the National Natural Science Foundation of China (No.10572049)
文摘Based on the elasto-plastic mechanics and continuum damage theory, a yield criterion related to spherical tensor of stress is proposed to describe the mixed hardening of damaged orthotropic materials. Its dimensionless form is isomorphic with the Mises criterion for isotropic materials. Furthermore, the incremental elasto-plastic damage constitutive equations and damage evolution equations are established. Based on the classical nonlinear plate theory, the incremental nonlinear equilibrium equations of orthotropic thin plates considering damage effect are obtained, and solved with the finite difference and iteration methods. In the numerical examples, the effects of damage evolution and initial deflection on the elasto-plastic postbuckling of orthotropic plates are discussed in detail.
基金The authors are grateful for the financial assis- tance from the National Science Foundation of China (U1710113), the China Postdoctoral Science Foundation (2017M622903), the Fund for Shanxi Key Subjects Construction, Excellent innovation projects of graduate students in Shanxi (2017SY077), Heavy Machinery Engineering Research Center of Ministry of Education (20172004).
文摘A numerical model was established to calculate the cycle feed rate through studying the case of a cold pilger mill with the 304 stainless steel pipe. Firstly, the precise constitutive equation of 304 stainless steel was obtained through nonlinearly fitting the true stress-strain data from unidirectional tensile test. Then, the numerical method to calculate the equivalent deformation was determined according to the plastic deformation feature of the steel tube during cold rolling and the incremental theory. Finally, the cycle feed rate of cold roiled 304 stainless steel pipe was extracted when formulating springback through utilizing above results comprehensively and unloading law. Stress state, metal flow, finished pipe size and distribution of residual stress were obtained by finite element method to calculate the whole rolling process when the cycle feed rate was 10 mm, and the optimized model was verified through finished pipe size.