期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Length-Changeable Incremental Extreme Learning Machine 被引量:2
1
作者 You-Xi Wu Dong Liu He Jiang 《Journal of Computer Science & Technology》 SCIE EI CSCD 2017年第3期630-643,共14页
Extreme learning machine (ELM) is a learning algorithm for generalized single-hidden-layer feed-forward networks (SLFNs). In order to obtain a suitable network architecture, Incremental Extreme Learning Machine (... Extreme learning machine (ELM) is a learning algorithm for generalized single-hidden-layer feed-forward networks (SLFNs). In order to obtain a suitable network architecture, Incremental Extreme Learning Machine (I-ELM) is a sort of ELM constructing SLFNs by adding hidden nodes one by one. Although kinds of I-ELM-class algorithms were proposed to improve the convergence rate or to obtain minimal training error, they do not change the construction way of I-ELM or face the over-fitting risk. Making the testing error converge quickly and stably therefore becomes an important issue. In this paper, we proposed a new incremental ELM which is referred to as Length-Changeable Incremental Extreme Learning Machine (LCI-ELM). It allows more than one hidden node to be added to the network and the existing network will be regarded as a whole in output weights tuning. The output weights of newly added hidden nodes are determined using a partial error-minimizing method. We prove that an SLFN constructed using LCI-ELM has approximation capability on a universal compact input set as well as on a finite training set. Experimental results demonstrate that LCI-ELM achieves higher convergence rate as well as lower over-fitting risk than some competitive I-ELM-class algorithms. 展开更多
关键词 single-hidden-layer feed-forward network (SLFN) incremental extreme learning machine (I-ELM) random hidden node convergence rate universal approximation
原文传递
A Novel Hidden Danger Prediction Method in CloudBased Intelligent Industrial Production Management Using Timeliness Managing Extreme Learning Machine
2
作者 Xiong Luo Xiaona Yang +3 位作者 Weiping Wang Xiaohui Chang Xinyan Wang Zhigang Zhao 《China Communications》 SCIE CSCD 2016年第7期74-82,共9页
To prevent possible accidents,the study of data-driven analytics to predict hidden dangers in cloud service-based intelligent industrial production management has been the subject of increasing interest recently.A mac... To prevent possible accidents,the study of data-driven analytics to predict hidden dangers in cloud service-based intelligent industrial production management has been the subject of increasing interest recently.A machine learning algorithm that uses timeliness managing extreme learning machine is utilized in this article to achieve the above prediction.Compared with traditional learning algorithms,extreme learning machine(ELM) exhibits high performance because of its unique feature of a high generalization capability at a fast learning speed.Timeliness managing ELM is proposed by incorporating timeliness management scheme into ELM.When using the timeliness managing ELM scheme to predict hidden dangers,newly incremental data could be added prior to the historical data to maximize the contribution of the newly incremental training data,because the incremental data may be able to contribute reasonable weights to represent the current production situation according to practical analysis of accidents in some industrial productions.Experimental results from a coal mine show that the use of timeliness managing ELM can improve the prediction accuracy of hidden dangers with better stability compared with other similar machine learning methods. 展开更多
关键词 prediction incremental learning extreme learning machine cloud service
下载PDF
Station-keeping control for a stratosphere airship via wind speed prediction approach
3
作者 Jihui Qiu Shaoping Shen Zhibin Li 《International Journal of Intelligent Computing and Cybernetics》 EI 2017年第4期464-477,共14页
Purpose–The purpose of this paper is to improve the control precision of the station-keeping control for a stratosphere airship through the feedforward-feedback PID controller which is designed by the wind speed pred... Purpose–The purpose of this paper is to improve the control precision of the station-keeping control for a stratosphere airship through the feedforward-feedback PID controller which is designed by the wind speed prediction based on the incremental extreme learning machine(I-ELM).Design/methodology/approach–First of all,the online prediction of wind speed is implemented by the I-ELM with rolling time.Second,the feedforward-feedback PID controller is designed through the position information of the airship and the predicted wind speed.In the end,the one-dimensional dynamic model of the stratosphere airship is built,and the controller is applied in the numerical simulation.Findings–Based on the conducted numerical simulations,some valuable conclusions are obtained.First,through the comparison between the predicted value and true value of the wind speed,the wind speed prediction based on I-ELM is very accurate.Second,the feedforward-feedback PID controller designed in this paper is very effective.Originality/value–This paper is very valuable to the research of a high-accuracy station-keeping control of stratosphere airship. 展开更多
关键词 Feedforward-feedback PID controller incremental extreme learning machine Station-keeping control Stratosphere airship Wind speed prediction
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部