We investigated the effects of heating rate on the process parameters of superplastic forming for Zr55Cu30Al10Ni5 by differential scanning calorimetry. The continuous heating and isothermal annealing analyses suggeste...We investigated the effects of heating rate on the process parameters of superplastic forming for Zr55Cu30Al10Ni5 by differential scanning calorimetry. The continuous heating and isothermal annealing analyses suggested that the temperatures of glass transition and onset crystallization are heating rate-dependent in the supercooled liquid region. Then, the time-temperature-transformation diagram under different heating rates indicates that increasing the heating rate can lead to an increase of the incubation time at the same anneal temperature in the supercooled liquid region. Based on the Arrhenius relationship, we discovered that the incubation time increases by 1.08-1.11 times with double increase of the heating rate at the same anneal temperature, and then verified it by the data of literatures and the experimental results. The obtained curve of the max available incubation time reveals that the incubation time at a certain anneal temperature in the supercooled liquid region is not infinite, and will increase with increasing heating rate until this temperature shifts out of the supercooled liquid region because of exceeding critical heating rate. It is concluded that heating rate must be an important processing parameter of superplastic forming for Zr55Cu30Al10Ni5.展开更多
Water biostability is of particular concern to water supply as a major limiting factor for heterotrophic bacterial growth in water distribution systems. This study focused on bacterial growth dynamics in the series di...Water biostability is of particular concern to water supply as a major limiting factor for heterotrophic bacterial growth in water distribution systems. This study focused on bacterial growth dynamics in the series dilution of water samples with TOC(total organic carbon) values determined beforehand. The results showed that the specific growth rate of Pseudomonas fluorescens P17 varied dramatically and irregularly with TOC value when TOC concentrations were low enough during the initial periods of incubation under given conditions. According to this relationship between bacterial growth rate and TOC, a dilution incubation method was designed for the study of water biostability. With the method under a given condition, a turning-point TOC value was found at a relatively fixed point in the curve between bacterial growth rate and TOC of water sample, and the variation of growth rate had different characteristics below the turning-point TOC value relative to that over this value. A turning-point TOC value similarly existed in all experiments not only with tap water, but also with acetate and mixed solutions. And in the dilution incubation method study, the affections were analyzed by condition factors such as inoculum amount,incubation time and nature of the organic carbon source. In very low organic carbon water environments, the variation characteristics of bacterial growth rate will be useful to further understand the meaning of water biostability.展开更多
基金Funded by the National Natural Science Foundation of China(Nos.51175210 and 51175211)
文摘We investigated the effects of heating rate on the process parameters of superplastic forming for Zr55Cu30Al10Ni5 by differential scanning calorimetry. The continuous heating and isothermal annealing analyses suggested that the temperatures of glass transition and onset crystallization are heating rate-dependent in the supercooled liquid region. Then, the time-temperature-transformation diagram under different heating rates indicates that increasing the heating rate can lead to an increase of the incubation time at the same anneal temperature in the supercooled liquid region. Based on the Arrhenius relationship, we discovered that the incubation time increases by 1.08-1.11 times with double increase of the heating rate at the same anneal temperature, and then verified it by the data of literatures and the experimental results. The obtained curve of the max available incubation time reveals that the incubation time at a certain anneal temperature in the supercooled liquid region is not infinite, and will increase with increasing heating rate until this temperature shifts out of the supercooled liquid region because of exceeding critical heating rate. It is concluded that heating rate must be an important processing parameter of superplastic forming for Zr55Cu30Al10Ni5.
基金the National Natural Science Foundation of China for their financial support (No. 51378374)the Fundamental Research Funds for the Central Universities (No. 0400219207)
文摘Water biostability is of particular concern to water supply as a major limiting factor for heterotrophic bacterial growth in water distribution systems. This study focused on bacterial growth dynamics in the series dilution of water samples with TOC(total organic carbon) values determined beforehand. The results showed that the specific growth rate of Pseudomonas fluorescens P17 varied dramatically and irregularly with TOC value when TOC concentrations were low enough during the initial periods of incubation under given conditions. According to this relationship between bacterial growth rate and TOC, a dilution incubation method was designed for the study of water biostability. With the method under a given condition, a turning-point TOC value was found at a relatively fixed point in the curve between bacterial growth rate and TOC of water sample, and the variation of growth rate had different characteristics below the turning-point TOC value relative to that over this value. A turning-point TOC value similarly existed in all experiments not only with tap water, but also with acetate and mixed solutions. And in the dilution incubation method study, the affections were analyzed by condition factors such as inoculum amount,incubation time and nature of the organic carbon source. In very low organic carbon water environments, the variation characteristics of bacterial growth rate will be useful to further understand the meaning of water biostability.