期刊文献+
共找到162篇文章
< 1 2 9 >
每页显示 20 50 100
A review of rock macro-indentation:Theories,experiments,simulations,and applications
1
作者 Weiqiang Xie Xiaoli Liu +2 位作者 Xiaoping Zhang Xinmei Yang Xiaoxiong Zhou 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第6期2351-2374,共24页
Rock macro-indentation plays a fundamental role in mechanical rock breaking for various rock engineering application,such as drilling,tunneling,cutting,and sawing.Over the past decades,extensive research has been cond... Rock macro-indentation plays a fundamental role in mechanical rock breaking for various rock engineering application,such as drilling,tunneling,cutting,and sawing.Over the past decades,extensive research has been conducted to understand the indentation mechanisms and responses through various approaches.This review aims to provide an overview of the current status and recent advancements in theories,experiments,numerical simulations,and applications of macro-indentation in rock engineering.It starts with elaborating on the mechanisms of macro-indentation,followed by a discussion of the merits and limitations of commonly used models.Influence factors and their effects on indentation test results are then summarized.Various numerical simulation methods for rock macro-indentation are highlighted,along with their advantages and disadvantages.Subsequently,the applications of indentation tests and indentation indices in characterizing rock properties are explored.It reveals that compression-tension,compression-shear,and composite models are widely employed in rock macroindentation.While the compression-tension model is straightforward to use,it may overlook the anisotropic properties of rocks.On the other hand,the composite model provides a more comprehensive description of rock indentation but requires complex calculations.Additionally,factors,such as indentation rate,indenter geometry,rock type,specimen size,and confining pressure,can significantly influence the indentation results.Simulation methods for macro-indentation encompass continuous medium,discontinuous medium,and continuous-discontinuous medium methods,with selection based on their differences in principle.Furthermore,rock macro-indentation can be practically applied to mining engineering,tunneling engineering,and petroleum drilling engineering.Indentation indices serve as valuable tools for characterizing rock strength,brittleness,and drillability.This review sheds light on the development of rock macro-indentation and its extensive application in engineering practice.Specialists in the field can gain a comprehensive understanding of the indentation process and its potential in various rock engineering endeavors. 展开更多
关键词 Rock macro-indentation indentation test indentation indices MECHANISM Rock breaking
下载PDF
Study of damage behavior and repair effectiveness of patch repaired carbon fiber laminate under quasi-static indentation loading
2
作者 Alok Kumar Chinmaya Kumar Sahoo A.Arockiarajan 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第4期29-41,共13页
Damage caused due to low-velocity impacts in composites leads to substantial deterioration in their residual strength and eventually provokes structural failure.This work presents an experimental investigation on the ... Damage caused due to low-velocity impacts in composites leads to substantial deterioration in their residual strength and eventually provokes structural failure.This work presents an experimental investigation on the effects of different patch and parent laminate stacking sequences on the enhancement of impact strength of Carbon Fiber Reinforced Polymers(CFRP)composites by utilising the adhesively bonded external patch repair technique.Damage evolution study is also performed with the aid of Acoustic Emission(AE).Two different quasi-isotropic configurations were selected for the parent laminate,viz.,[45°/45°/0°/0°]s and[45°/0°/45°/0°]s.Quasi Static Indentation(QSI)test was performed on both the pristine laminates,and damage areas were detected by using the C-scan inspection technique.Damaged laminates were repaired by using a single-sided patch of two different configurations,viz.,[45°/45°/45°/45°]and[45°/0°/0°/45°],and employing a circular plug to fill the damaged hole.Four different combinations of repaired laminates with two configurations of each parent and patch laminate were produced,which were further subjected to the QSI test.The results reveal the effectiveness of the repair method,as all the repaired laminates show higher impact resistance compared to the respective pristine laminates.Patches of[45°/0°/0°/45°]configuration when repaired by taking[45°/45°/0°/0°]s and[45°/0°/45°/0°]s as parents exhibited 68%and 73%higher peak loads,respectively,than the respective pristine laminates.Furthermore,parent and patch of configuration[45°/0°/45°/0°]s and[45°/0°/0°/45°],respectively,attain the highest peak load,whereas[45°/45°/0°/0°]s and[45°/45°/45°/45°]combinations possess the most gradual decrease in the load. 展开更多
关键词 Carbon fiber reinforced polymers(CFRP) Quasi-isotropic laminate Quasi static indentation(QSI) Acoustic emission(AE) Composite repair
下载PDF
Indentation behavior of a semi-infinite piezoelectric semiconductor under a rigid flat-ended cylindrical indenter
3
作者 Shijing GAO Lele ZHANG +2 位作者 Jinxi LIU Guoquan NIE Weiqiu CHEN 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2024年第4期649-662,共14页
This paper theoretically studies the axisymmetric frictionless indentation of a transversely isotropic piezoelectric semiconductor(PSC)half-space subject to a rigid flatended cylindrical indenter.The contact area and ... This paper theoretically studies the axisymmetric frictionless indentation of a transversely isotropic piezoelectric semiconductor(PSC)half-space subject to a rigid flatended cylindrical indenter.The contact area and other surface of the PSC half-space are assumed to be electrically insulating.By the Hankel integral transformation,the problem is reduced to the Fredholm integral equation of the second kind.This equation is solved numerically to obtain the indentation behaviors of the PSC half-space,mainly including the indentation force-depth relation and the electric potential-depth relation.The results show that the effect of the semiconductor property on the indentation responses is limited within a certain range of variation of the steady carrier concentration.The dependence of indentation behavior on material properties is also analyzed by two different kinds of PSCs.Finite element simulations are conducted to verify the results calculated by the integral equation technique,and good agreement is demonstrated. 展开更多
关键词 piezoelectric semiconductor(PSC) insulating indenter electromechanical response singular integral equation finite element simulation
下载PDF
Exciting News from Indentations onto Silicon, Copper, and Tungsten
4
作者 Gerd Kaupp 《Journal of Applied Mathematics and Physics》 2023年第12期4042-4078,共37页
Indentations onto crystalline silicon and copper with various indenter geometries, loading forces at room temperature belong to the widest interests in the field, because of the physical detection of structural phase ... Indentations onto crystalline silicon and copper with various indenter geometries, loading forces at room temperature belong to the widest interests in the field, because of the physical detection of structural phase transitions. By using the mathematically deduced F<sub>N</sub>h<sup>3/2 </sup>relation for conical and pyramidal indentations we have a toolbox for deciding between faked and experimental loading curves. Four printed silicon indentation loading curves (labelled with 292 K, 260 K, 240 K and 210 K) proved to be faked and not experimental. This is problematic for the AI (artificial intelligence) that will probably not be able to sort faked data out by itself but must be told to do so. High risks arise, when published faked indentation reports remain unidentified and unreported for the mechanics engineers by reading, or via AI. For example, when AI recommends a faked quality such as “no phase changes” of a technical material that is therefore used, it might break down due to an actually present low force, low transition energy phase-change. This paper thus installed a tool box for the distinction of experimental and faked loading curves of indentations. We found experimental and faked loading curves of the same research group with overall 14 authoring co-workers in three publications where valid and faked ones were next to each other and I can thus only report on the experimental ones. The comparison of Si and Cu with W at 20-fold higher physical hardness shows its enormous influence to the energies of phase transition and of their transition energies. Thus, the commonly preferred ISO14577-ASTM hardness values HISO (these violate the energy law and are simulated!) leads to almost blind characterization and use of mechanically stressed technical materials (e.g. airplanes, windmills, bridges, etc). The reasons are carefully detected and reported to disprove that the coincidence or very close coincidence of all of the published loading curves from 150 K to 298 K are constructed but not experimental. A tool-box for distinction of experimental from faked indentation loading curves (simulations must be indicated) is established in view of protecting the AI from faked data, which it might not be able by itself to sort them out, so that technical materials with wrongly attributed mechanical properties might lead to catastrophic accidents such as all of us know of. There is also the risk that false theories might lead to discourage the design of important research projects or for not getting them granted. This might for example hamper or ill-fame new low temperature indentation projects. The various hints for identifying faked claims are thus presented in great detail. The low-temperature instrumental indentations onto silicon have been faked in two consecutive publications and their reporting in the third one, so that these are not available for the calculation of activation energies. Conversely, the same research group published an indentation loading curve of copper as taken at 150 K that could be tested for its validity with the therefore created tools of validity tests. The physical algebraic calculations provided the epochal detection of two highly exothermic phase transitions of copper that created two polymorphs with negative standard energy content. This is world-wide the second case and the first one far above the 77 K of liquid nitrogen. Its existence poses completely new thoughts for physics chemistry and perhaps techniques but all of them are open and unprepared for our comprehension. The first chemical reactions might be in-situ photolysis and the phase transitions can be calculated from experimental curves. But several further reported low temperature indentation loading curves of silicon were tested for their experimental reality. And the results are compared to new analyses with genuine room temperature results. A lot is to be learned from the differences at room and low temperature. 展开更多
关键词 Phase-Transition-Onset and -Energy indentation of Silicone COPPER Copper Nanoparticles Tungsten with Polymorphs Low-Temperature indentations Detection of Faked Loading Curves Protection of AI from False Advices Risk of Catastrophic Crashes Physical Hardness Exothermic Copper-Transitions Algebraic Calculations Negative-Standard-Energy Polymorphs
下载PDF
Mechanism and Method of Testing Fracture Toughness and Impact Absorbed Energy of Ductile Metals by Spherical Indentation Tests
5
作者 Jianxun Li Tairui Zhang +2 位作者 Shang Wang Jirui Cheng Weiqiang Wang 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2023年第5期156-173,共18页
To address the problem of conventional approaches for mechanical property determination requiring destructive sampling, which may be unsuitable for in-service structures, the authors proposed a method for determining ... To address the problem of conventional approaches for mechanical property determination requiring destructive sampling, which may be unsuitable for in-service structures, the authors proposed a method for determining the quasi-static fracture toughness and impact absorbed energy of ductile metals from spherical indentation tests (SITs). The stress status and damage mechanism of SIT, mode I fracture, Charpy impact tests, and related tests were frst investigated through fnite element (FE) calculations and scanning electron microscopy (SEM) observations, respectively. It was found that the damage mechanism of SITs is diferent from that of mode I fractures, while mode I fractures and Charpy impact tests share the same damage mechanism. Considering the diference between SIT and mode I fractures, uniaxial tension and pure shear were introduced to correlate SIT with mode I fractures. Based on this, the widely used critical indentation energy (CIE) model for fracture toughness determination using SITs was modifed. The quasi-static fracture toughness determined from the modifed CIE model was used to evaluate the impact absorbed energy using the dynamic fracture toughness and energy for crack initiation. The efectiveness of the newly proposed method was verifed through experiments on four types of steels: Q345R, SA508-3, 18MnMoNbR, and S30408. 展开更多
关键词 Spherical indentation tests Fracture toughness CIE model Impact absorbed energy
下载PDF
Physical Macrohardness of the Kinetic Indentation of the Material: Function and Universal Unit of Measure (Part 1)
6
作者 Shtyrov Nikolay 《Journal of Mechanics Engineering and Automation》 2023年第3期64-78,共15页
Three directions of development of kinetic indentation methods.Physical-energetic analysis of the indentation force diagram according to ISO 14577.Physical theory and universal criterion for the macrohardness of a mat... Three directions of development of kinetic indentation methods.Physical-energetic analysis of the indentation force diagram according to ISO 14577.Physical theory and universal criterion for the macrohardness of a material.Model of the physical process,thermomechanical potential,function of the state of the kinetic macroindentation process.Method for determining the physical function and unit of measurement of the kinetic macrohardness of a material.The ratio of the values of the empirical(standard)and physical macrohardness of the material.Physical reason for the appearance of the size effect in empirical indentation methods.The principle of determining the standard value of physical macrohardness. 展开更多
关键词 Review physical theory of kinetic indentation method for determining physical macrohardness of the material
下载PDF
Phase-Transitions at High, Very High, and Very Low Temperatures upon Nano-Indentations: Onset Forces and Transition Energies
7
作者 Gerd Kaupp 《Advances in Materials Physics and Chemistry》 2023年第6期101-120,共20页
This paper describes the phase-transition energies from published loading curves on the basis of the physically deduced F<sub>N</sub> = k-h<sup>3/2</sup> law that does not violate the energy la... This paper describes the phase-transition energies from published loading curves on the basis of the physically deduced F<sub>N</sub> = k-h<sup>3/2</sup> law that does not violate the energy law by assuming h<sup>2</sup> instead, as still do ISO-ASTM 14,577 standards. This law is valid for all materials and all “one-point indentation” temperatures. It detects initial surface effects and phase-transition kink-unsteadiness. Why is that important? The mechanically induced phase-transitions form polymorph interfaces with increased risk of crash nucleation for example at the pickle forks of airliners. After our published crashing risk, as nucleated within microscopic polymorph-interfaces via pre-cracks, had finally appeared (we presented microscopic images (5000×) from a model system), 550 airliners were all at once grounded for 18 months due to such microscopic pre-cracks at their pickle forks (connection device for wing to body). These pre-cracks at phase-transition interfaces were previously not complained at the (semi)yearlycheckups of all airliners. But materials with higher compliance against phase- transitions must be developed for everybody’s safety, most easily by checking with nanoindentations, using their physically correct analyses. Unfortunately, non-physical analyses, as based on the after all incredible exponent 2 on h for the F<sub>N</sub> versus h loading curve are still enforced by ISO-ASTM standards that cannot detect phase-transitions. These standards propagate that all of the force, as applied to the penetrating cone or pyramid shall be used for the depth formation, but not also in part for the pressure to the indenter environment. However, the remaining part of pressure (that was not consumed for migrations, etc.) is always used for the elastic modulus detection routine. That severely violates the energy-law! Furthermore, the now physically analyzed published loading curves contain the phase-transition onsets and energies information, because these old-fashioned authors innocently (?) published (of course correct) experimental loading curves. These follow as ever the physically deduced F<sub>N</sub> = k-h<sup>3/2</sup> relation that does not violate the energy law. Nevertheless, the old-fashioned authors stubbornly assume h<sup>2</sup>instead of h<sup>3/2</sup> as still do ISO-ASTM 14,577 standards according to an Oliver-Pharr publication of 1992 and textbooks. The present work contributes to understanding the temperature dependence of phase-transitions under mechanical load, not only for aviation and space flights, which is important. The physical calculations use exclusively regressions and pure algebra (no iterations, no fittings, and no simulations) in a series of straightforward steps by correcting for unavoidable initial effects from the axis cuts of the linear branches from the above equation exhibiting sharp kink unsteadiness at the onset of phase transitions. The test loading curves are from Molybdenum and Al 7075 alloy. The valid published loading curves strictly follow the F<sub>N</sub> = k-h<sup>3/2</sup> relation. Full applied work, conversion work, and conversion work per depth unit show reliable overall comparable order of magnitude values at temperature increase by 150°C (Al 7075) and 980°C (Mo) when also considering different physical hardnesses and penetration depths. It turns out how much the normalized endothermic phase-transition energy decreases upon temperature increase. For the only known 1000°C indentation we provide reason that the presented loading curves changes are only to a minor degree caused by the thermal expansion. The results with Al 7075 up to 170°C are successfully compared. Al 7075 alloy is also checked by indentation with liquid nitrogen cooling (77 K). It gives two endothermic and one very prominent exothermic phase transition with particularly high normalized phase-transition energy. This indentation loading curve at liquid nitrogen temperature reveals epochal novelties. The energy requiring endothermic phase transitions (already seen at 20°C and above) at 77 K is shortly after the start of the second polymorph (sharply at 19.53 N loading force) followed by a strongly exothermic phase-transition by producing (that is losing) energy-content. Both processes at 77 K are totally unexpected. The produced energy per depth unit is much higher energy than the one required for the previous endothermic conversions. This exothermic phase-transition profits from the inability to provide further energy for the formation of the third polymorph as endothermic obtained at 70°C and above. That is only possible because the very cold crystal can no longer support endothermic events but supports exothermic ones. Both endothermic and exothermic phase-transitions at 77 K under load are unprecedented and were not expected before. While the energetic support at 77 K for endothermic processes under mechanical load is unusual but still understandable (there are also further means to produce lower temperatures). But strongly exothermicphase-transition under mechanical load for the production of new modification with negative energy content (less than the energy content of the ambient polymorph) at very low temperature is an epochal event here on earth. It leads to new global thinking and promises important new applications. The energy content of strongly exothermic transformed material is less than the thermodynamic standard zero energy-content on earth. And it can only be reached when there is no possibility left to produce an endothermic phase-transition. Such less than zero-energy-content materials should be isolated, using appropriate equipment. Their properties must be investigated by chemists, crystallographers, and physicists for cosmological reasons. It could be that such materials will require cooling despite their low energy content (higher stability!) and not survive at ambient temperatures and pressures on earth, but only because we do not know of such negative-energy-content materials with our arbitrary thermodynamic standard zeros on earth. At first one will have to study how far we can go up with temperature for keeping them stable. Thus, the apparently never before considered unprecedented result opens up new thinking for the search of new polymorphs that can, of course, not be reached by heating. Various further applications including cosmology and space flight explorations are profiting from it. 展开更多
关键词 Aluminum Alloy Aviation Cosmology Epochal News High and Liquid Nitrogen Temperature indentations Negative-Energy-Content Polymorph Molybdenum Phase-Transition-Energy
下载PDF
Nanoindentation Size Effect on Type 316 Stainless Steel 被引量:1
8
作者 姚远 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2004年第B10期30-33,共4页
Nanoindentation size effect was investigated under very low loads on type 316 stainless steel. Nanoindentation measurements were carried out on the samples surfaces with a Berkovich pyramidal diamond indenter applying... Nanoindentation size effect was investigated under very low loads on type 316 stainless steel. Nanoindentation measurements were carried out on the samples surfaces with a Berkovich pyramidal diamond indenter applying loads in the range of 25-1000μN. Simultaneously, AFM images of the sample surface were recorded before and after indentation process .For type 316 stainless steel, the indentation size effect was found. The results were discussed in the terms of the model of geometrically necessary dislocations proposed to interpret the indentation size effect.It can be seen that the square of the nanohardness, H 2, vs the inverse of indentation depth, 1/h, is linearly dependent on the indented depth in the range of 25-150nm,which is a good qualitative agreement with the predictions of the model. However, for shallow indents, the slope of the line severely changes.Some possible mechanisms for this change were proposed. 展开更多
关键词 NANOindentation indentation size effect type 316 stainless steel
下载PDF
Multimodal probe for optical coherence tomography epidetection and micron-scale indentation
9
作者 L.Bartolini F.Feroldi +3 位作者 J.J.A.Weda M.Slaman J.F.de Boer D.Iannuzzi 《Journal of Innovative Optical Health Sciences》 SCIE EI CAS 2017年第6期64-72,共9页
We present a multimodal ferrule-top sensor designed to perform the integrated epidetection of Optical Coberence Tomognphy(OCT)depth-profiles and micron-scale indentation by all-optical detection.By scarning a sample u... We present a multimodal ferrule-top sensor designed to perform the integrated epidetection of Optical Coberence Tomognphy(OCT)depth-profiles and micron-scale indentation by all-optical detection.By scarning a sample under the probe,we can obtain structural crosse soction images and identify a region of interest in a nonhomogencous sample.Then,with the same probe and setup,we can immediately target that area with a series of spherical indentation measurements,in which the applied load is known with aμN precision,the indentation depth with sub-/m precision and a maximum contact radius of 100 pm.Thanks to the visualization of the internal structure of the sample,we can gain a better insi ght into the observed mechanical behavior.The ability to impart a small,confined load,and perfomn OCT A scans at the same time,could lead to an altemative,high transverse resolution,Optical Coherence Elastography(OCE)sensor. 展开更多
关键词 Optomechanical MICROindentation optical coherence tomography indentation multimodal sensor epidetection
下载PDF
Micro/nano Indentation and Single Grit Diamond Grinding Mechanism on Ultra Pure Fused Silica 被引量:10
10
作者 ZHAO Qingliang GUO Bing +1 位作者 STEPHENSIN David CORBETT John 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2011年第6期963-970,共8页
The existing research about ductile grinding of fused silica glass was mainly focused on how to carry out ductile regime material removal for generating very "smoothed" surface and investigate the machining-induced ... The existing research about ductile grinding of fused silica glass was mainly focused on how to carry out ductile regime material removal for generating very "smoothed" surface and investigate the machining-induced damage in the grinding in order to reduce or eliminate the subsurface damage.The brittle/ductile transition behavior of optical glass materials and the wear of diamond wheel are the most important factors for ductile grinding of optical glass.In this paper,the critical brittle/ductile depth,the influence factors on brittle/ductile transition behavior,the wear of diamond grits in diamond grinding of ultra pure fused silica(UPFS) are investigated by means of micro/nano indentation technique,as well as single grit diamond grinding on an ultra-stiff machine tool,Tetraform "C".The single grit grinding processes are in-process monitored using acoustic emission(AE) and force dynamometer simultaneously.The wear of diamond grits,morphology and subsurface integrity of the machined groves are examined with atomic force microscope(AFM) and scanning electron microscope(SEM).The critical brittle/ductile depth of more than 0.5 μm is achieved.When compared to the using roof-like grits,by using pyramidal diamonds leads to higher critical depths of scratch with identical grinding parameters.However,the influence of grit shapes on the critical depth is not significant as supposed.The grinding force increased linearly with depth of cut in the ductile removal regime,but in brittle removal regime,there are large fluctuations instead of forces increase.The SEM photographs of the cross-section profile show that the median cracks dominate the crack patterns beneath the single grooves.Furthermore,The SEM photographs show multi worn patterns of diamond grits,indicating an inhomogeneous wear mechanism of diamond grits in grinding of fused silica with diamond grinding wheels.The proposed research provides the basal technical theory for improving the ultra-precision grinding of UPFS. 展开更多
关键词 ultra pure fused silica (UPFS) micro/nano indentation single grit diamond grinding ductile material removal subsurface integrity diamond grits wear
下载PDF
The indenter tip radius effect in micro- and nanoindentation hardness experiments 被引量:5
11
作者 Fan Zhang Yonggang Huang Keh-Chih Hwang 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2006年第1期1-8,共8页
Nix and Gao established an important relation between the microindentation hardness and indentation depth. Such a relation has been verified by many microindentation experiments (indentation depths in the micrometer ... Nix and Gao established an important relation between the microindentation hardness and indentation depth. Such a relation has been verified by many microindentation experiments (indentation depths in the micrometer range), but it does not always hold in nanoindentation experiments (indentation depths approaching the nanometer range). Indenter tip radius effect has been proposed by Qu et al. and others as possibly the main factor that causes the deviation from Nix and Gao's relationship. We have developed an indentation model for micro- and nanoindentation, which accounts for two indenter shapes, a sharp, conical indenter and a conical indenter with a spherical tip. The analysis is based on the conventional theory of mechanism-based strain gradient plasticity established from the Taylor dislocation model to account for the effect of geometrically necessary dislocations. The comparison between numerical result and Feng and Nix's experimental data shows that the indenter tip radius effect indeed causes the deviation from Nix-Gao relation, but it seems not be the main factor. 展开更多
关键词 Taylor dislocation model Strain gradient plasticity indentation Nix-Gao relation
下载PDF
Dynamic characteristics of nanoindentation in Ni:A molecular dynamics simulation study 被引量:4
12
作者 Muhammad Imran Fayyaz Hussain +1 位作者 Muhammad Rashid S.A.Ahmad 《Chinese Physics B》 SCIE EI CAS CSCD 2012年第11期367-372,共6页
In this work, three-dimensional molecular dynamics simulation is carried out to elucidate the nanoindentation behaviour of single crystal Ni. The substrate indenter system is modelled using hybrid interatomic potentia... In this work, three-dimensional molecular dynamics simulation is carried out to elucidate the nanoindentation behaviour of single crystal Ni. The substrate indenter system is modelled using hybrid interatomic potentials including the manybody potential (embedded atom method) and two-body Morse potential. The spherical indenter is chosen, and the simulation is performed for different loading rates from 10 m/s to 200 m/s. Results show that the maximum indentation load and hardness of the system increase with the increase of velocity. The effect of indenter size on the nanoindentation response is also analysed. It is found that the maximum indentation load is higher for the large indenter whereas the hardness is higher for the smaller indenter. Dynamic nanoindentation is carried out to investigate the behaviour of Ni substrate to multiple loading-unloading cycles. It is observed from the results that the increase in the number of loading unloading cycles reduces the maximum load and hardness of the Ni substrate. This is attributed to the decrease in recovery force due to defects and dislocations produced after each indentation cycle. 展开更多
关键词 indentation NANOCRYSTALLINE loading-unloading DISLOCATION
下载PDF
Determination of Elastic and Creep Properties of Thin-film Systems from indentation Experiments 被引量:8
13
作者 Z.F.Yue and G.Eggeler (Institut fur Werkstoffe, Ruhr-Universitat Bochum, 44 801 Bochum, Germany) 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2000年第6期559-567,共9页
Based on the detailed computer simulation of the indentation testing on the thin-film systems, the present paper explores the detailed procedure of determining elastic properties (elastic modulusE^(f) and Poisson rati... Based on the detailed computer simulation of the indentation testing on the thin-film systems, the present paper explores the detailed procedure of determining elastic properties (elastic modulusE^(f) and Poisson ratio v(f)) and creep parameters (CCREEP^(f) and nCREEP^(f)) for a simple Norton law (ε=CCREEP^(f)σ^n CREE^(f), where e is creep strain rate, and a is the stress) material for a thin film coated on a creep substrate, whose elastic properties(E^(s) and v^(s)) and creep properties (CCREEP^(s) and nCREEP^(s)) of the substrate are known, from indentation elastic and creep testing,respectively. The influences of the thickness of the thin-film and the size of the indenter on the indentation behavior have been discussed. It is shown that the boundary between the thin film and the substrate has great influence on the indentation creep behavior. The relative sizes of indentation systems are chosen so that the behavior of the indentation on the film is influenced by the substrate. The two elastic parameters E^(f) and v^(f) of the film are coupled on the influence of the elastic behavior of indentation. With the two different size indenters, the two elastic parameters E^(f) and v^(f) of the film can be uniquely determined by the indentation experimental slopes of depth to applied net section stress results. The procedure of determining of the two Norton law parameters CCREEP^(f) and nCREEP^(f) includes the following steps by the steady indentation rate d. The first step to calculate the creep indentation rate on certain loads of the two different sizes of indenters on a set of assumed values of CCREEP^(f) and nCREEP^(f)Then to build relationship between the creep indentation rate and the assumed CCREEP^(f) and nCREEP^(f) With the experimental creep indentation rate to intersect two sets of which have the same values of d. The last step is to build the CCREEP^(f) and nCREEP^(f)curves from the intersection points for the two indenters. These two curves CCREEP^(f) and nCREEP^(f) 展开更多
关键词 Thin Determination of Elastic and Creep Properties of Thin-film Systems from indentation Experiments
下载PDF
Indentation of elastically soft and plastically compressible solids 被引量:3
14
作者 A.Needleman V.Tvergaard E.Van der Giessen 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2015年第4期473-480,共8页
The effect of soft elasticity, i.e., a relatively small value of the ratio of Young's modulus to yield strength and plastic compressibility on the indentation of isotropically hardening elastic-viscoplastic solids is... The effect of soft elasticity, i.e., a relatively small value of the ratio of Young's modulus to yield strength and plastic compressibility on the indentation of isotropically hardening elastic-viscoplastic solids is investigated. Calcu- lations are carried out for indentation of a perfectly sticking rigid sharp indenter into a cylinder modeling indentation of a half space. The material is characterized by a finite strain elastic-viscoplastic constitutive relation that allows for plas- tic as well as elastic compressibility. Both soft elasticity and plastic compressibility significantly reduce the ratio of nomi- nal indentation hardness to yield strength. A linear relation is found between the nominal indentation hardness and the log- arithm of the ratio of Young's modulus to yield strength, but with a different coefficient than reported in previous studies. The nominal indentation hardness decreases rapidly for small deviations from plastic incompressibility and then decreases rather slowly for values of the plastic Poisson's ratio less than 0.25. For both soft elasticity and plastic compressibility, the main reason for the lower values of indentation hardness is related to the reduction in the hydrostatic stress level in the material below the indenter. 展开更多
关键词 PLASTICITY COMPRESSIBILITY indentation Finite element analysis
下载PDF
A plastic indentation model for sandwich beams with metallic foam cores 被引量:3
15
作者 Zhong-You Xie Ji-Lin Yu Zhi-Jun Zheng 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2011年第6期963-966,共4页
Light weight high performance sandwich composite structures have been used extensively in various load bearing applications.Experiments have shown that the indentation significantly reduces the load bearing capacity o... Light weight high performance sandwich composite structures have been used extensively in various load bearing applications.Experiments have shown that the indentation significantly reduces the load bearing capacity of sandwiched beams.In this paper,the indentation behavior of foam core sandwich beams without considering the globally axial and flexural deformation was analyzed using the principle of virtual velocities.A concisely theoretical solution of loading capacity and denting profile was presented.The denting load was found to be proportional to the square root of the denting depth.A finite element model was established to verify the prediction of the model.The load-indentation curves and the profiles of the dented zone predicted by theoretical model and numerical simulation are in good agreement. 展开更多
关键词 indentation Sandwich beam Metallic foam
下载PDF
An inverse problem in film/substrate indentation:extracting both the Young's modulus and thickness of films 被引量:2
16
作者 Yin Zhang Feifei Gao +1 位作者 Zhiyue Zheng Zhihai Cheng 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2018年第6期1061-1071,共11页
In an indentation test,the effective Young's modulus of a film/substrate bilayer heterostructure varies with the indentation depth,a phenomenon known as the substrate effect.In previous studies investigating this,... In an indentation test,the effective Young's modulus of a film/substrate bilayer heterostructure varies with the indentation depth,a phenomenon known as the substrate effect.In previous studies investigating this,only the Young's modulus of the film was unknown.Once the effective Young's modulus of a film/substrate structure is determined at a given contact depth,the Young's modulus of the film can be uniquely determined,i.e.,there is a one-to-one relation between the Young's modulus of the film and the film/substrate effective Young's modulus.However,at times it is extremely challenging or even impossible to measure the film thickness.Furthermore,the precise definition of the layer/film thickness for a two-dimensional material can be problematic.In the current study,therefore,the thickness of the film and its Young's modulus are treated as two unknowns that must be determined.Unlike the case with one unknown,there are infinite combinations of film thickness and Young's modulus which can yield the same effective Young's modulus for the film/substrate.An inverse problem is formulated and solved to extract the Young's modulus and thickness of the film from the indentation depth-load curve.The accuracy and robustness of the inverse problem-solving method are also demonstrated. 展开更多
关键词 indentation test FILM SUBSTRATE Inverse problem
下载PDF
Modeling and Validation of Indentation Depth of Abrasive Grain into Lithium Niobate Wafer by Fixed-Abrasive Lapping 被引量:2
17
作者 Zhu Nannan Zhu Yongwei +3 位作者 Xu Jun Wang Zhankui Xu Sheng Zuo Dunwen 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI CSCD 2017年第1期97-104,共8页
The prediction of indentation depth of abrasive grain in hydrophilic fixed-abrasive(FA)lapping is crucial for controlling material removal rate and surface quality of the work-piece being machined.By applying the theo... The prediction of indentation depth of abrasive grain in hydrophilic fixed-abrasive(FA)lapping is crucial for controlling material removal rate and surface quality of the work-piece being machined.By applying the theory of contact mechanics,a theoretical model of the indentation depth of abrasive grain was developed and the relationships between indentation depth and properties of contact pairs and abrasive back-off were studied.Also,the average surface roughness(Ra)of lapped wafer was approximately calculated according to the obtained indentation depth.To verify the rationality of the proposed model,a series of lapping experiments on lithium niobate(LN)wafers were carried out,whose average surface roughness Ra was measured by atomic force microscope(AFM).The experimental results were coincided with the theoretical predictions,verifying the rationality of the proposed model.It is concluded that the indentation depth of the fixed abrasive was primarily affected by the applied load,wafer micro hardness and pad Young′s modulus and so on.Moreover,the larger the applied load,the more significant the back-off of the abrasive grain.The model established in this paper is helpful to the design of FA pad and its machining parameters,and the prediction of Ra as well. 展开更多
关键词 fixed-abrasive LAPPING indentation DEPTH ABRASIVE back-off lithium NIOBATE WAFER average surface roughness
下载PDF
Deformation Analysis of Micro/Nano Indentation and Diamond Grinding on Optical Glasses 被引量:2
18
作者 ZHAO Qingliang ZHAO Lingling +2 位作者 GUO Bing STEPHENSIN David CORBETT John 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2012年第3期411-418,共8页
The previous research of precision grinding optical glasses with electrolytic in process dressing (ELID) technology mainly concentrated on the action of ELID and machining parameters when grinding, which aim at gene... The previous research of precision grinding optical glasses with electrolytic in process dressing (ELID) technology mainly concentrated on the action of ELID and machining parameters when grinding, which aim at generating very "smoothed" surfaces and reducing the subsurface damage. However, when grinding spectrosil 2000 and BK7 glass assisted with ELID technology, a deeply comparative study on material removal mechanism and the wheel wear behaviors have not been given yet. In this paper, the micro/nano indentation technique is initially applied for investigating the mechanical properties of optical glasses, whose results are then refereed to evaluate the machinability. In single grit diamond scratching on glasses, the scratching traces display four kinds of scratch characteristics according to different material removal modes. In normal grinding experiments, the result shows BK7 glass has a better machinability than that of spectrosil 2000, corresponding to what the micro/nano indentation vent revealed. Under the same grinding depth parameters, the smaller amplitude of acoustic emission (AE) raw signals, grinding force and grinding force ratio correspond to a better surface quality. While for these two kinds of glasses, with the increasing of grinding depth, the variation trends of the surface roughness, the force ratio, and the AE raw signals are contrary, which should be attributed to different material removal modes. Moreover, the SEM micrographs of used wheels surface indicate that diamond grains on the wheel surface after grinding BK7 glass are worn more severely than that of spectrosil 2000. The proposed research analyzes what happened in the grinding process with different material removal patterns, which can provide a basis for producing high-quality optical glasses and comprehensively evaluate the surface and subsurface integrity of optical glasses. 展开更多
关键词 optical glasses micro/nano indentation single grit diamond scratching material removal mode surface integrity electrolytic in process dressing (ELID)
下载PDF
The effect of large deformation and material nonlinearity on gel indentation 被引量:2
19
作者 Zheng Duan Yonghao An Jiaping Zhang Hanqing Jiang 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2012年第4期1058-1067,共10页
A gel, an aggregate of polymers with solvents, has dual attributes of solid and liquid as solvent migrates in and out of the polymer network. Indentation has recently been used to characterize the mechanical propertie... A gel, an aggregate of polymers with solvents, has dual attributes of solid and liquid as solvent migrates in and out of the polymer network. Indentation has recently been used to characterize the mechanical properties of gels. This paper evaluates the effects of large deformation and material nonlinearity on gel indentation through theoretical modeling and finite element analysis. It is found that large deformation significantly affects the interpretation of the experimen- tal observations and the classical relation between indenta- tion force and depth has limitations for large deformation. The material nonlinearity does not play a very important role on indentation experiment so that the poroelasticity is a good approximation. Based on these observations, this paper proposes an alternative approach to measure the mechanical properties of gels, namely, uniaxial compression experiment. 展开更多
关键词 Gel indentation Large deformation Finite element simulation
下载PDF
Formation of the bow shock indentation: MHD simulation results 被引量:2
20
作者 BaoHang Qu JianYong Lu +3 位作者 Ming Wang HuanZhi Yuan Yue Zhou HanXiao Zhang 《Earth and Planetary Physics》 CSCD 2021年第3期259-269,共11页
Simulation results from a global magnetohydrodynamic(MHD)model are used to examine whether the bow shock has an indentation and characterize its formation conditions,as well as its physical mechanism.The bow shock is ... Simulation results from a global magnetohydrodynamic(MHD)model are used to examine whether the bow shock has an indentation and characterize its formation conditions,as well as its physical mechanism.The bow shock is identified by an increase in plasma density of the solar wind,and the indentation of the bow shock is determined by the shock flaring angle.It is shown that when the interplanetary magnetic field(IMF)is southward and the Alfvén Mach number(Mα)of solar wind is high(>5),the bow shock indentation can be clearly determined.The reason is that the outflow region of magnetic reconnection(MR)that occurs in the low latitude area under southward IMF blocks the original flow in the magnetosheath around the magnetopause,forming a high-speed zone and a low-speed zone that are upstream and downstream of each other.This structure hinders the surrounding flow in the magnetosheath,and the bow shock behind the structure widens and forms an indentation.When Mαis low,the magnetosheath is thicker and the disturbing effect of the MR outflow region is less obvious.Under northward IMF,MR occurs at high latitudes,and the outflow region formed by reconnection does not block the flow inside the magnetosheath,thus the indentation is harder to form.The study of the conditions and formation process of the bow shock indentation will help to improve the accuracy of bow shock models. 展开更多
关键词 indentation of bow shock global MHD simulation interplanetary magnetic field Bz Alfvén Mach number
下载PDF
上一页 1 2 9 下一页 到第
使用帮助 返回顶部