期刊文献+
共找到200篇文章
< 1 2 10 >
每页显示 20 50 100
Real and Fitted Spherical Indentations 被引量:2
1
作者 Gerd Kaupp 《Advances in Materials Physics and Chemistry》 2020年第10期207-229,共23页
Spherical indentations that rely on original date are analyzed with the physically correct mathematical formula and its integration that take into account the radius over depth changes upon penetration. Linear plots, ... Spherical indentations that rely on original date are analyzed with the physically correct mathematical formula and its integration that take into account the radius over depth changes upon penetration. Linear plots, phase-transition onsets, energies, and pressures are algebraically obtained for germanium, zinc-oxide and gallium-nitride. There are low pressure phase-transitions that correspond to, or are not resolved by hydrostatic anvil onset pressures. This enables the attribution of polymorph structures, by comparing with known structures from pulsed laser deposition or molecular beam epitaxy and twinning. The spherical indentation is the easiest way for the synthesis and further characterization of polymorphs, now available in pure form under diamond calotte and in contact with their corresponding less dense polymorph. The unprecedented results and new possibilities require loading curves from experimental data. These are now easily distinguished from data that are “fitted” to make them concur with widely used unphysical Johnson’s formula for spheres (“<span style="white-space:nowrap;"><em>P</em> = (4/3)<em>h</em><sup>3/2</sup><em>R</em><sup>1/2</sup><em>E</em><sup><span style="white-space:nowrap;">&#8727;</span></sup></span>”) not taking care of the <em>R/h</em> variation. Its challenge is indispensable, because its use involves “fitting equations” for making the data concur. These faked reports (no “experimental” data) provide dangerous false moduli and theories. The fitted spherical indentation reports with radii ranging from 4 to 250 μm are identified for PDMS, GaAs, Al, Si, SiC, MgO, and Steel. The detailed analysis reveals characteristic features. 展开更多
关键词 Spherical indentations Correct Formula Phase-Transition Onset Pressure False Johnson Formula Detection of Data Fittings
下载PDF
Study of machining indentations over the entire surface of a target ball using the force modulation approach 被引量:1
2
作者 Yuzhang Wang Yanquan Geng +3 位作者 Guo Li Jiqiang Wang Zhuo Fang Yongda Yan 《International Journal of Extreme Manufacturing》 EI 2021年第3期64-72,共9页
A modified five-axis cutting system using a force control cutting strategy was to machine indentations in different annuli on the entire surface of a target ball.The relationship between the cutting depths and the app... A modified five-axis cutting system using a force control cutting strategy was to machine indentations in different annuli on the entire surface of a target ball.The relationship between the cutting depths and the applied load as well as the microsphere rotation speed were studied experimentally to reveal the micromachining mechanism.In particular,aligning the rotating center of the high precision spindle with the microsphere center is essential for guaranteeing the machining accuracy of indentations.The distance between adjacent indentations on the same annulus and the vertical distance between adjacent annuli were determined by the rotating speed of the micro-ball and the controllable movement of the high-precision stage,respectively.In order to verify the feasibility and effect of the proposed cutting strategy,indentations with constant and expected depths were conducted on the entire surface of a hollow thin-walled micro-ball with a diameter of 1 mm.The results imply that this machining methodology has the potential to provide the target ball with desired modulated defects for simulating the inertial confinement fusion implosion experiment. 展开更多
关键词 force modulation controllable indentations entire micro-ball surface microsphere center alignment
下载PDF
PIEZOSPECTROSCOPIC STUDY OF RESIDUAL STRESSES AROUND INDENTATIONS IN SiC/Al_O_3 NANOCOMPOSITE
3
作者 陶杰 崔益华 杨斌鹏 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI 2003年第1期85-90,共6页
A new experimental measurement of residual stresses around Vickers′ indentations on the surface of the SiC/Al 2O 3 nanocomposites is proposed with the aid of a Raman microprobe. Results s how that the shifts of R... A new experimental measurement of residual stresses around Vickers′ indentations on the surface of the SiC/Al 2O 3 nanocomposites is proposed with the aid of a Raman microprobe. Results s how that the shifts of R lines in the fluorescence spectra va ry with the distance from the centre of indentation. The magnitude of load appli ed on the surface of the materials through the indenter influences the shifts of R lines to great extent. The luminescence of R lines of the materials before indenting is used to determine the residual stresses around the indentation in the materials, assuming that the stress tensor is transversely isotropic. Final ly, the term of hydrostatic stress is adopted to explain and compare different residual stresses around indentations with the increase of the indenting load an d the distance from the centre of indentations. < 展开更多
关键词 residual stress NANOCOMPOSITE piezospec troscopi c method INDENTATION SiC/Al 2O 3
下载PDF
Exciting News from Indentations onto Silicon, Copper, and Tungsten
4
作者 Gerd Kaupp 《Journal of Applied Mathematics and Physics》 2023年第12期4042-4078,共37页
Indentations onto crystalline silicon and copper with various indenter geometries, loading forces at room temperature belong to the widest interests in the field, because of the physical detection of structural phase ... Indentations onto crystalline silicon and copper with various indenter geometries, loading forces at room temperature belong to the widest interests in the field, because of the physical detection of structural phase transitions. By using the mathematically deduced F<sub>N</sub>h<sup>3/2 </sup>relation for conical and pyramidal indentations we have a toolbox for deciding between faked and experimental loading curves. Four printed silicon indentation loading curves (labelled with 292 K, 260 K, 240 K and 210 K) proved to be faked and not experimental. This is problematic for the AI (artificial intelligence) that will probably not be able to sort faked data out by itself but must be told to do so. High risks arise, when published faked indentation reports remain unidentified and unreported for the mechanics engineers by reading, or via AI. For example, when AI recommends a faked quality such as “no phase changes” of a technical material that is therefore used, it might break down due to an actually present low force, low transition energy phase-change. This paper thus installed a tool box for the distinction of experimental and faked loading curves of indentations. We found experimental and faked loading curves of the same research group with overall 14 authoring co-workers in three publications where valid and faked ones were next to each other and I can thus only report on the experimental ones. The comparison of Si and Cu with W at 20-fold higher physical hardness shows its enormous influence to the energies of phase transition and of their transition energies. Thus, the commonly preferred ISO14577-ASTM hardness values HISO (these violate the energy law and are simulated!) leads to almost blind characterization and use of mechanically stressed technical materials (e.g. airplanes, windmills, bridges, etc). The reasons are carefully detected and reported to disprove that the coincidence or very close coincidence of all of the published loading curves from 150 K to 298 K are constructed but not experimental. A tool-box for distinction of experimental from faked indentation loading curves (simulations must be indicated) is established in view of protecting the AI from faked data, which it might not be able by itself to sort them out, so that technical materials with wrongly attributed mechanical properties might lead to catastrophic accidents such as all of us know of. There is also the risk that false theories might lead to discourage the design of important research projects or for not getting them granted. This might for example hamper or ill-fame new low temperature indentation projects. The various hints for identifying faked claims are thus presented in great detail. The low-temperature instrumental indentations onto silicon have been faked in two consecutive publications and their reporting in the third one, so that these are not available for the calculation of activation energies. Conversely, the same research group published an indentation loading curve of copper as taken at 150 K that could be tested for its validity with the therefore created tools of validity tests. The physical algebraic calculations provided the epochal detection of two highly exothermic phase transitions of copper that created two polymorphs with negative standard energy content. This is world-wide the second case and the first one far above the 77 K of liquid nitrogen. Its existence poses completely new thoughts for physics chemistry and perhaps techniques but all of them are open and unprepared for our comprehension. The first chemical reactions might be in-situ photolysis and the phase transitions can be calculated from experimental curves. But several further reported low temperature indentation loading curves of silicon were tested for their experimental reality. And the results are compared to new analyses with genuine room temperature results. A lot is to be learned from the differences at room and low temperature. 展开更多
关键词 Phase-Transition-Onset and -Energy Indentation of Silicone COPPER Copper Nanoparticles Tungsten with Polymorphs Low-Temperature indentations Detection of Faked Loading Curves Protection of AI from False Advices Risk of Catastrophic Crashes Physical Hardness Exothermic Copper-Transitions Algebraic Calculations Negative-Standard-Energy Polymorphs
下载PDF
Phase-Transitions at High, Very High, and Very Low Temperatures upon Nano-Indentations: Onset Forces and Transition Energies
5
作者 Gerd Kaupp 《Advances in Materials Physics and Chemistry》 2023年第6期101-120,共20页
This paper describes the phase-transition energies from published loading curves on the basis of the physically deduced F<sub>N</sub> = k-h<sup>3/2</sup> law that does not violate the energy la... This paper describes the phase-transition energies from published loading curves on the basis of the physically deduced F<sub>N</sub> = k-h<sup>3/2</sup> law that does not violate the energy law by assuming h<sup>2</sup> instead, as still do ISO-ASTM 14,577 standards. This law is valid for all materials and all “one-point indentation” temperatures. It detects initial surface effects and phase-transition kink-unsteadiness. Why is that important? The mechanically induced phase-transitions form polymorph interfaces with increased risk of crash nucleation for example at the pickle forks of airliners. After our published crashing risk, as nucleated within microscopic polymorph-interfaces via pre-cracks, had finally appeared (we presented microscopic images (5000×) from a model system), 550 airliners were all at once grounded for 18 months due to such microscopic pre-cracks at their pickle forks (connection device for wing to body). These pre-cracks at phase-transition interfaces were previously not complained at the (semi)yearlycheckups of all airliners. But materials with higher compliance against phase- transitions must be developed for everybody’s safety, most easily by checking with nanoindentations, using their physically correct analyses. Unfortunately, non-physical analyses, as based on the after all incredible exponent 2 on h for the F<sub>N</sub> versus h loading curve are still enforced by ISO-ASTM standards that cannot detect phase-transitions. These standards propagate that all of the force, as applied to the penetrating cone or pyramid shall be used for the depth formation, but not also in part for the pressure to the indenter environment. However, the remaining part of pressure (that was not consumed for migrations, etc.) is always used for the elastic modulus detection routine. That severely violates the energy-law! Furthermore, the now physically analyzed published loading curves contain the phase-transition onsets and energies information, because these old-fashioned authors innocently (?) published (of course correct) experimental loading curves. These follow as ever the physically deduced F<sub>N</sub> = k-h<sup>3/2</sup> relation that does not violate the energy law. Nevertheless, the old-fashioned authors stubbornly assume h<sup>2</sup>instead of h<sup>3/2</sup> as still do ISO-ASTM 14,577 standards according to an Oliver-Pharr publication of 1992 and textbooks. The present work contributes to understanding the temperature dependence of phase-transitions under mechanical load, not only for aviation and space flights, which is important. The physical calculations use exclusively regressions and pure algebra (no iterations, no fittings, and no simulations) in a series of straightforward steps by correcting for unavoidable initial effects from the axis cuts of the linear branches from the above equation exhibiting sharp kink unsteadiness at the onset of phase transitions. The test loading curves are from Molybdenum and Al 7075 alloy. The valid published loading curves strictly follow the F<sub>N</sub> = k-h<sup>3/2</sup> relation. Full applied work, conversion work, and conversion work per depth unit show reliable overall comparable order of magnitude values at temperature increase by 150°C (Al 7075) and 980°C (Mo) when also considering different physical hardnesses and penetration depths. It turns out how much the normalized endothermic phase-transition energy decreases upon temperature increase. For the only known 1000°C indentation we provide reason that the presented loading curves changes are only to a minor degree caused by the thermal expansion. The results with Al 7075 up to 170°C are successfully compared. Al 7075 alloy is also checked by indentation with liquid nitrogen cooling (77 K). It gives two endothermic and one very prominent exothermic phase transition with particularly high normalized phase-transition energy. This indentation loading curve at liquid nitrogen temperature reveals epochal novelties. The energy requiring endothermic phase transitions (already seen at 20°C and above) at 77 K is shortly after the start of the second polymorph (sharply at 19.53 N loading force) followed by a strongly exothermic phase-transition by producing (that is losing) energy-content. Both processes at 77 K are totally unexpected. The produced energy per depth unit is much higher energy than the one required for the previous endothermic conversions. This exothermic phase-transition profits from the inability to provide further energy for the formation of the third polymorph as endothermic obtained at 70°C and above. That is only possible because the very cold crystal can no longer support endothermic events but supports exothermic ones. Both endothermic and exothermic phase-transitions at 77 K under load are unprecedented and were not expected before. While the energetic support at 77 K for endothermic processes under mechanical load is unusual but still understandable (there are also further means to produce lower temperatures). But strongly exothermicphase-transition under mechanical load for the production of new modification with negative energy content (less than the energy content of the ambient polymorph) at very low temperature is an epochal event here on earth. It leads to new global thinking and promises important new applications. The energy content of strongly exothermic transformed material is less than the thermodynamic standard zero energy-content on earth. And it can only be reached when there is no possibility left to produce an endothermic phase-transition. Such less than zero-energy-content materials should be isolated, using appropriate equipment. Their properties must be investigated by chemists, crystallographers, and physicists for cosmological reasons. It could be that such materials will require cooling despite their low energy content (higher stability!) and not survive at ambient temperatures and pressures on earth, but only because we do not know of such negative-energy-content materials with our arbitrary thermodynamic standard zeros on earth. At first one will have to study how far we can go up with temperature for keeping them stable. Thus, the apparently never before considered unprecedented result opens up new thinking for the search of new polymorphs that can, of course, not be reached by heating. Various further applications including cosmology and space flight explorations are profiting from it. 展开更多
关键词 Aluminum Alloy Aviation Cosmology Epochal News High and Liquid Nitrogen Temperature indentations Negative-Energy-Content Polymorph Molybdenum Phase-Transition-Energy
下载PDF
PIEZOSPECTROSCOPIC STUDY OF RESIDUAL STRESSES AROUND INDENTATIONS IN SiC/AlO3 NANOCOMPOSITE
6
作者 陶杰 崔益华 杨斌鹏 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI 2003年第1期85-90,共页
A new experimental measurement of residual stresses around Vickers′ indentations on the surface of the SiC/Al 2O 3 nanocomposites is proposed with the aid of a Raman microprobe. Results s how that the shifts of R... A new experimental measurement of residual stresses around Vickers′ indentations on the surface of the SiC/Al 2O 3 nanocomposites is proposed with the aid of a Raman microprobe. Results s how that the shifts of R lines in the fluorescence spectra va ry with the distance from the centre of indentation. The magnitude of load appli ed on the surface of the materials through the indenter influences the shifts of R lines to great extent. The luminescence of R lines of the materials before indenting is used to determine the residual stresses around the indentation in the materials, assuming that the stress tensor is transversely isotropic. Final ly, the term of hydrostatic stress is adopted to explain and compare different residual stresses around indentations with the increase of the indenting load an d the distance from the centre of indentations. 【 展开更多
关键词 residual stress NANOCOMPOSITE piezospec troscopi c method INDENTATION SiC/Al 2O 3
全文增补中
Element Analysis of Instrumented Sharp Indentations into Pressure-sensitive Materials
7
作者 Minh-Quy LE Seock-Sam KIM 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2007年第2期277-282,共6页
Finite element analysis was carried out to investigate the conical indentation response of elastic-plastic solids within the framework of the hydrostatic pressure dependence and the power law strain hardening. A large... Finite element analysis was carried out to investigate the conical indentation response of elastic-plastic solids within the framework of the hydrostatic pressure dependence and the power law strain hardening. A large number of 40 difierent combinations of elasto-plastic properties with n ranging from 0 to 0.5 and σy/E ranging from 0.0014 to 0.03 were used in the computations. The loading curvature C and the average contact pressure Pave were considered within the concept of representative strains and the dimensional analysis.Dimensionless functions associated with these two parameters were formulated for each studied value of the pressure sensitivity. The results for pressure sensitive materials lie between those for Von Mises materials and the elastic model. 展开更多
关键词 Finite element analysis INDENTATION Mechanical Properties Pressure-sensitive materials
下载PDF
Valid Geometric Solutions for Indentations with Algebraic Calculations
8
作者 Gerd Kaupp 《Advances in Pure Mathematics》 2020年第5期322-336,共15页
This paper analyzes the force vs depth loading curves of conical, pyramidal, wedged and for spherical indentations on a strict mathematical basis by explicit use of the indenter geometries rather than on still world-w... This paper analyzes the force vs depth loading curves of conical, pyramidal, wedged and for spherical indentations on a strict mathematical basis by explicit use of the indenter geometries rather than on still world-wide used iterated “contact depths” with elastic theory and violation of the energy law. The now correctly analyzed loading curves provide as yet undetectable phase-transition. For the spherical indentations, this includes an obvious correction for the varying depth/radius ratio, which had previously been disregarded. Only algebraic formulas are now used for the calculation of material’s properties without data-fittings, or simplifications, or false simulations. Penetration resistance differences of materials’ polymorphs provide precise intersection values as kink unsteadiness by equalization of linear regression lines from mathematically linearized loading curves. These intersections indicate phase transition onset values for depth and force. The precise and correct determination of phase-transition onsets allows for energy and phase-transition energy calculations. The unprecedented algebraic equations are most simply and mathematically reproducibly deduced. There are no restrictions for elastic and/or plastic behavior and no use of different formulas for different force ranges. The novel indentation formulas reveal unprecedented access to the onset, energy and transition energy of phase-transitions. This is now also achieved for spherical indentations. Their formula as deduced for plotting is reformulated for integrations. The distinction of applied work (Wapplied) and indentation work (Windent) allows now for comparing spherical with pyramidal indentation phase-transitions. Only low energy phase-transitions from pyramidal indentation may be missed in spherical indentations. The rather low penetration depths of sphere calottes calculate very close for cap and flat area values. This allows for the calculation of the indentation phase-transition onset pressure and thus the successful comparison with hydrostatic anvil pressurizing results. This is very helpful for their interpretations, as low energy phase-transitions are often missed under the anvil, and it further strengthens the unparalleled ease of the indentation techniques. Exemplification is reported for pyramidal, spherical, and hydrostatic anvil stressing by the numerical analysis of published germanium data. The previous widely accepted historical indentation theories and standards are challenged. Falsely simulated and even published so-called “experimental” indentation data from the literature can most easily be checked. They are mathematically unsound and their correction is urgently necessary for scientific reasons and daily safety with stressed materials. The motivation for this paper is the challenge of worldwide incorrect ISO 14577 standards for false and incomplete characterization of materials. The minimization of catastrophic failures e.g. in aviation requires the strengthening and the advancements of the mathematical truth by using our closed formulas that are based on undeniable geometric and algebraic calculation rules. 展开更多
关键词 Geometry of Indenters ALGEBRAIC SOLUTIONS False Mathematic Concepts GERMANIUM PYRAMIDAL Conical INDENTATION Spherical INDENTATION
下载PDF
Mechanical Properties of Porosity-Free Beta Tricalcium Phosphate (<i>β</i>-TCP) Ceramic by Sharp and Spherical Indentations
9
作者 D. Chicot A. Tricoteaux +3 位作者 J. Lesage A. Leriche M. Descamps E. Rguiti-Constantin 《New Journal of Glass and Ceramics》 2013年第1期16-28,共13页
Instrumented indentation has been developed for determining the mechanical properties of materials but an accurate determination of these properties requires attention on contact stiffness analysis, indentation size e... Instrumented indentation has been developed for determining the mechanical properties of materials but an accurate determination of these properties requires attention on contact stiffness analysis, indentation size effect, elastic modulus mode of calculation, role of stress distribution around the indent and its introduction in expanding cavity models for tensile mechanical properties determination. In the present work, models for hardness, elastic modulus and plastic properties determination by indentation are briefly reviewed and applied for the characterization of a porosity-free β-TCP bioceramic. As a main result the elastic modulus is found to be equal to 162 GPa resulting from the application of different approaches based on the use of various sharp and spherical indenters. Additionally, Martens and contact macrohardnesses were found to be independent on the dwell-time and equals to 4.1 and 6.3 GPa, respectively. Finally, models based on Hollomon’s and Ludwik’s laws as well as expanding cavity models were critically analyzed in light of their capacity to determine the yield stress and to represent the behavior law of the material. As a main result, the yield stress of the β-TCP is found to be equal to 2 GPa. 展开更多
关键词 Β-TCP CERAMIC INDENTATION Bulk Modulus Hardness Tensile Properties
下载PDF
A review of rock macro-indentation:Theories,experiments,simulations,and applications
10
作者 Weiqiang Xie Xiaoli Liu +2 位作者 Xiaoping Zhang Xinmei Yang Xiaoxiong Zhou 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第6期2351-2374,共24页
Rock macro-indentation plays a fundamental role in mechanical rock breaking for various rock engineering application,such as drilling,tunneling,cutting,and sawing.Over the past decades,extensive research has been cond... Rock macro-indentation plays a fundamental role in mechanical rock breaking for various rock engineering application,such as drilling,tunneling,cutting,and sawing.Over the past decades,extensive research has been conducted to understand the indentation mechanisms and responses through various approaches.This review aims to provide an overview of the current status and recent advancements in theories,experiments,numerical simulations,and applications of macro-indentation in rock engineering.It starts with elaborating on the mechanisms of macro-indentation,followed by a discussion of the merits and limitations of commonly used models.Influence factors and their effects on indentation test results are then summarized.Various numerical simulation methods for rock macro-indentation are highlighted,along with their advantages and disadvantages.Subsequently,the applications of indentation tests and indentation indices in characterizing rock properties are explored.It reveals that compression-tension,compression-shear,and composite models are widely employed in rock macroindentation.While the compression-tension model is straightforward to use,it may overlook the anisotropic properties of rocks.On the other hand,the composite model provides a more comprehensive description of rock indentation but requires complex calculations.Additionally,factors,such as indentation rate,indenter geometry,rock type,specimen size,and confining pressure,can significantly influence the indentation results.Simulation methods for macro-indentation encompass continuous medium,discontinuous medium,and continuous-discontinuous medium methods,with selection based on their differences in principle.Furthermore,rock macro-indentation can be practically applied to mining engineering,tunneling engineering,and petroleum drilling engineering.Indentation indices serve as valuable tools for characterizing rock strength,brittleness,and drillability.This review sheds light on the development of rock macro-indentation and its extensive application in engineering practice.Specialists in the field can gain a comprehensive understanding of the indentation process and its potential in various rock engineering endeavors. 展开更多
关键词 Rock macro-indentation Indentation test Indentation indices MECHANISM Rock breaking
下载PDF
Indentation behavior of a semi-infinite piezoelectric semiconductor under a rigid flat-ended cylindrical indenter
11
作者 Shijing GAO Lele ZHANG +2 位作者 Jinxi LIU Guoquan NIE Weiqiu CHEN 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2024年第4期649-662,共14页
This paper theoretically studies the axisymmetric frictionless indentation of a transversely isotropic piezoelectric semiconductor(PSC)half-space subject to a rigid flatended cylindrical indenter.The contact area and ... This paper theoretically studies the axisymmetric frictionless indentation of a transversely isotropic piezoelectric semiconductor(PSC)half-space subject to a rigid flatended cylindrical indenter.The contact area and other surface of the PSC half-space are assumed to be electrically insulating.By the Hankel integral transformation,the problem is reduced to the Fredholm integral equation of the second kind.This equation is solved numerically to obtain the indentation behaviors of the PSC half-space,mainly including the indentation force-depth relation and the electric potential-depth relation.The results show that the effect of the semiconductor property on the indentation responses is limited within a certain range of variation of the steady carrier concentration.The dependence of indentation behavior on material properties is also analyzed by two different kinds of PSCs.Finite element simulations are conducted to verify the results calculated by the integral equation technique,and good agreement is demonstrated. 展开更多
关键词 piezoelectric semiconductor(PSC) insulating indenter electromechanical response singular integral equation finite element simulation
下载PDF
Study of damage behavior and repair effectiveness of patch repaired carbon fiber laminate under quasi-static indentation loading
12
作者 Alok Kumar Chinmaya Kumar Sahoo A.Arockiarajan 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第4期29-41,共13页
Damage caused due to low-velocity impacts in composites leads to substantial deterioration in their residual strength and eventually provokes structural failure.This work presents an experimental investigation on the ... Damage caused due to low-velocity impacts in composites leads to substantial deterioration in their residual strength and eventually provokes structural failure.This work presents an experimental investigation on the effects of different patch and parent laminate stacking sequences on the enhancement of impact strength of Carbon Fiber Reinforced Polymers(CFRP)composites by utilising the adhesively bonded external patch repair technique.Damage evolution study is also performed with the aid of Acoustic Emission(AE).Two different quasi-isotropic configurations were selected for the parent laminate,viz.,[45°/45°/0°/0°]s and[45°/0°/45°/0°]s.Quasi Static Indentation(QSI)test was performed on both the pristine laminates,and damage areas were detected by using the C-scan inspection technique.Damaged laminates were repaired by using a single-sided patch of two different configurations,viz.,[45°/45°/45°/45°]and[45°/0°/0°/45°],and employing a circular plug to fill the damaged hole.Four different combinations of repaired laminates with two configurations of each parent and patch laminate were produced,which were further subjected to the QSI test.The results reveal the effectiveness of the repair method,as all the repaired laminates show higher impact resistance compared to the respective pristine laminates.Patches of[45°/0°/0°/45°]configuration when repaired by taking[45°/45°/0°/0°]s and[45°/0°/45°/0°]s as parents exhibited 68%and 73%higher peak loads,respectively,than the respective pristine laminates.Furthermore,parent and patch of configuration[45°/0°/45°/0°]s and[45°/0°/0°/45°],respectively,attain the highest peak load,whereas[45°/45°/0°/0°]s and[45°/45°/45°/45°]combinations possess the most gradual decrease in the load. 展开更多
关键词 Carbon fiber reinforced polymers(CFRP) Quasi-isotropic laminate Quasi static indentation(QSI) Acoustic emission(AE) Composite repair
下载PDF
Using Optical Tweezers to Study the Friction of the Red Blood Cells
13
作者 Edoukoua Jean Michel Konin Pavel Yale +3 位作者 Abadê Ange-Boris N’guessan Kouassi Benoit Kouakou Abaka Michel Kouacou Eugene Megnassan 《Advances in Bioscience and Biotechnology》 CAS 2024年第2期100-111,共12页
In the last two decades the study of red blood cell elasticity using optical tweezers has known a rise appearing in the scientific research with regard to the various works carried out. Despite the various work done, ... In the last two decades the study of red blood cell elasticity using optical tweezers has known a rise appearing in the scientific research with regard to the various works carried out. Despite the various work done, no study has been done so far to study the influence of friction on the red blood cell indentation response using optical tweezers. In this study, we have developed a new approach to determine the coefficient of friction as well as the frictional forces of the red blood cell. This approach therefore allowed us to simultaneously carry out the indentation and traction test, which allowed us to extract the interfacial properties of the microbead red blood cell couple, among other things, the friction coefficient. This property would be extremely important to investigate the survival and mechanical features of cells, which will be of great physiological and pathological significance. But taking into account the hypothesis of friction as defined by the isotropic Coulomb law. The experiment performed for this purpose is the Brinell Hardness Test (DB). 展开更多
关键词 FRICTION INDENTATION Optical Tweezers TRIBOLOGY Red Blood Cells
下载PDF
Human Eosinophil Cell Manipulation by Optical Tweezers
14
作者 Pavel Yale Jean Michel Edoukoua Konin +2 位作者 Abadê Ange-Boris N’guessan Michel Abaka Kouacou Jérémie T. Zoueu 《Open Journal of Biophysics》 2024年第3期330-338,共9页
In this work, lateral deformation of human eosinophil cell during the lateral indentation by an optically trapped microbead of diameter 4.5 µm is studied. The images were captured using a CCD camera and the Boltz... In this work, lateral deformation of human eosinophil cell during the lateral indentation by an optically trapped microbead of diameter 4.5 µm is studied. The images were captured using a CCD camera and the Boltzmann statistics method was used for force calibration. Using the Hertz model, we calculated and compared the elastic moduli resulting from the lateral force, showing that the differences are important and the force should be considered. Besides the lateral component, the setup also allows us to examine the lateral cell-bead interaction. The mean values of the properties obtained, in particular the elastic stiffness and the shear stiffness, were Eh = (37.76 ± 2.85) µN/m and Gh = (12.57 ± 0.32) µN/m. These results show that the lateral indentation can therefore be used as a routine method for cell study, because it enabled us to manipulate the cell without contact with the laser. 展开更多
关键词 Optical Tweezers Human Eosinophil Cell INDENTATION Shear Stiffness
下载PDF
Unexpected Twinning and Phase-Transition of the Indentation Standards, Their Transition Energies, and Scientific Dichotomy
15
作者 Gerd Kaupp 《Journal of Applied Mathematics and Physics》 2024年第6期2119-2159,共41页
The general use of aluminium as an indentation standard for the iteration of contact heights for the determination of ISO-14577 hardness and elastic modulus is challenged because of as yet not appreciated phase-change... The general use of aluminium as an indentation standard for the iteration of contact heights for the determination of ISO-14577 hardness and elastic modulus is challenged because of as yet not appreciated phase-changes in the physical force-depth standard curve that seemed to be secured by claims from 1992. The physical and mathematical analyses with closed formulas avoid the still world-wide standardized energy-law violation by not reserving 33.33% (h2 belief) (or 20% h3/2 physical law) of the loading force and thus energy for all not depth producing events but using 100% for the depth formation is a severe violation of the energy law. The not depth producing part of the indentation work cannot be done with zero energy! Both twinning and structural phase-transition onsets and normalized phase-transition energies are now calculated without iterations but with physically correct closed arithmetic equations. These are reported for Berkovich and cubecorner indentations, including their comparison on geometric grounds and an indentation standard without mechanical twinning is proposed. Characteristic data are reported. This is the first detection of the indentation twinning of aluminium at room temperature and the mechanical twinning of fused quartz is also new. Their disqualification as indentation standards is established. Also, the again found higher load phase-transitions disqualify aluminium and fused quartz as ISO-ASTM 14577 (International Standardization Organization and American Society for Testing and Materials) standards for the contact depth “hc” iterations. The incorrect and still world-wide used black-box values for H- and Er-values (the latter are still falsely called “Young’s moduli” even though they are not directional) and all mechanical properties that depend on them. They lack relation to bulk moduli from compression experiments. Experimentally obtained and so published force vs depth parabolas always follow the linear FN = kh3/2 + Fa equation, where Fa is the axis-cut before and after the phase-transition branches (never “h2” as falsely enforced and used for H, Er and giving incorrectly calculated parameters). The regression slopes k are the precise physical hardness values, which for the first time allow for precise calculation of the mechanical qualities by indentation in relation to the geometry of the indenter tip. Exactly 20% of the applied force and thus energy is not available for the indentation depth. Only these scientific k-values must be used for AI-advises at the expense of falsely iterated indentation hardness H-values. Any incorrect H-ISO-ASTM and also the iterated Er-ISO-ASTM modulus values of technical materials in artificial intelligence will be a disaster for the daily safety. The AI must be told that these are unscientific and must therefore be replaced by physical data. Iterated data (3 and 8 free parameters!) cannot be transformed into physical data. One has to start with real experimental loading curves and an absolute ZerodurR standard that must be calibrated with standard force and standard length to create absolute indentation results. . 展开更多
关键词 Aluminium Fused Quartz Copper TWINNING Structural Phase-Transitions Undue Indentation Standards Data Manipulation ZerodurR Absolute Hardness
下载PDF
Microstructure and indentation toughness of Cr/CrN multilayer coatings by arc ion plating 被引量:5
16
作者 宋贵宏 娄茁 +2 位作者 李锋 陈立佳 贺春林 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2015年第3期811-816,共6页
Cr/CrN multilayer coatings with bilayer periods in the range from 1351 to 260 nm were prepared on 304 stainless steel substrates by arc ion plating to study the microstructure and properties of multilayer coatings and... Cr/CrN multilayer coatings with bilayer periods in the range from 1351 to 260 nm were prepared on 304 stainless steel substrates by arc ion plating to study the microstructure and properties of multilayer coatings and stimulate their application.SEM results confirm the clear periodicity of the Cr/CrN multilayer coatings and the clear interface between individual layers.XRD patterns reveal that these multilayer coatings contain Cr,CrN and Cr_2N phases.Because Cr layer is softer than its nitride layer,the hardness decreases with the shortening of the bilayer period(or increasing volume fraction of Cr layer).The Cr/CrN multilayer coating with 862 nm period possesses the highest indentation toughness due to a proper individual Cr and nitride layer thickness.However,for the Cr/CrN multilayer with the bilayer period of 1351 nm,it possesses the lowest toughness due to more nitride phase.The indentation toughness of Cr/CrN multilayer coatings is related with their bilayer period.A coating with a proper individual Cr and nitride layer thickness possesses the highest indentation toughness. 展开更多
关键词 Cr/CrN multilayer coating bilayer period HARDNESS indentation toughness
下载PDF
Indent软件在编程风格教学中的应用 被引量:5
17
作者 张良德 葛湘巍 刘东升 《计算机教育》 2010年第5期82-84,共3页
程序设计基础课程要注重培养学生良好的编程风格及习惯,但是现在编程风格教学现状却不容乐观。为使教师从繁重的指导工作中解脱出来,我们在编程风格教学中试验性地引入开源软件Indent,提高学生对编程风格学习的兴趣。
关键词 编程风格 Indent 程序设计基础 编程习惯
下载PDF
In-situ Raman observation on crack tips of Vickers indent in PLZT ceramics 被引量:2
18
作者 张飒 程璇 张颍 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2011年第10期2259-2263,共5页
Vickers indentation was introduced into the originally in-plane and out-of-plane poled PLZT ceramics.The Raman spectra were in-situ recorded at selected crack tips before and after the indentations,as well as after th... Vickers indentation was introduced into the originally in-plane and out-of-plane poled PLZT ceramics.The Raman spectra were in-situ recorded at selected crack tips before and after the indentations,as well as after the applications of external electric field.The results show that the changes in Raman intensities of optical modes could be sensitively related to 90° domain switching around the crack tips which are strongly dependent on the directions of original polarization and geometric locations.When the direction of electric field was perpendicular to the direction of original polarization,the 90° domain switching at crack tips of the Vickers indentation on the originally in-plane poled PLZT ceramics caused most significant change in the Raman intensity,which inhibited the crack growth.However,when the direction of electric field was parallel to the direction of original polarization,the growth of crack tips became predominantly without the 90° domain switching,which led to the crack growth. 展开更多
关键词 ferroelectric ceramics domain switching in-situ Raman spectroscopy Vickers indentation
下载PDF
环氧基倍半硅氧烷杂化膜的摩擦性能研究 被引量:1
19
作者 张兴文 孙科军 +1 位作者 胡立江 孙德智 《材料科学与工艺》 EI CAS CSCD 北大核心 2005年第2期185-188,共4页
采用溶胶-凝胶法,将不同含量的正硅酸乙酯(TEOS)与r-缩水甘油醚基丙基三甲基硅烷(GPMS)共水解缩合,所得终产物为有机-无机纳米杂化材料,用浸渍法使其在玻璃基体上成膜,并利用扫描探针电镜(SPM)对膜的形貌进行了表征.通过MTS Nano Indent... 采用溶胶-凝胶法,将不同含量的正硅酸乙酯(TEOS)与r-缩水甘油醚基丙基三甲基硅烷(GPMS)共水解缩合,所得终产物为有机-无机纳米杂化材料,用浸渍法使其在玻璃基体上成膜,并利用扫描探针电镜(SPM)对膜的形貌进行了表征.通过MTS Nano Indenter XP纳米压痕仪研究了TEOS的含量对杂化体系摩擦性能的影响.结果表明,环氧基倍半硅氧烷杂化膜在TEOS含量为5%时表面粗糙度最小、弹性恢复能力最大,TEOS含量为10%时摩擦系数最小. 展开更多
关键词 环氧基倍半硅氧烷 纳米杂化膜 MTS NANO Indenter XP纳米压痕仪 纳米划痕 摩擦性能
下载PDF
Physical Nanoindentation: From Penetration Resistance to Phase-Transition Energies 被引量:3
20
作者 Gerd Kaupp 《Advances in Materials Physics and Chemistry》 2019年第6期103-122,共20页
-The ISO standard 14577 is challenged for its violation of the energy law, its wrong relation of normal force FN with impression depth h, and for its iterative treatments. The solution of this dilemma is the use of sa... -The ISO standard 14577 is challenged for its violation of the energy law, its wrong relation of normal force FN with impression depth h, and for its iterative treatments. The solution of this dilemma is the use of sacrosanct simplest calculation rules for the loading parabola (now FN = kh3/2) giving straight lines for cones, pyramids and wedges. They provide the physical penetration resistance hardness k with dimension [Nm-3/2] and allow for non-iterative calculations with closed formulas, using simple undeniable calculation rules. The physically correct FN versus h3/2 plot is universally valid. It separates out the most common surface effects and reveals gradients. It provides unmatched precision, including reliability checks of experimental data. Regression analysis of FN versus h3/2 plots reveals eventual unsteadiness kink phase-transition onset with the transition-energy. This is shown for all kinds of solid materials, including salts, silicon, organics, polymers, composites, and superalloys. Exothermic and endothermic single and consecutive multiple phase-transitions with their surface dependence are distinguished and the results compared in 5 Tables. The sharp phase-transition onsets and the transition energies provide unprecedented most important materials’ characteristics that are indispensable for safety reasons. ISO ASTM is thus urged to thoroughly revise ISO 14577 and to work out new standards for the mechanically (also thermally) stressed materials. For example, the constancy of the first phase-transition parameters must be controlled, and materials must only be admitted for maximal forces well below the first phase-transition onset. Such onset loads can now be easily calculated. The nevertheless repeated oppositions against the physical analysis of indentations rest on incredibly poor knowledge of basic mathematics, errors that are uncovered. The safety aspects caused by the present unphysical materials’ parameters are discussed. 展开更多
关键词 ENERGY Law VIOLATION ISO-14577 Challenge Calculation Rules for indentations PHASE-TRANSITION ONSET and ENERGY Multiple Transitions Safety Problems
下载PDF
上一页 1 2 10 下一页 到第
使用帮助 返回顶部