Since it is unrealistic to do an experimental mixture assessment on every possible combination, mathematical model plays an important role in predicting the mixture toxicity. The present study is devoted to the furthe...Since it is unrealistic to do an experimental mixture assessment on every possible combination, mathematical model plays an important role in predicting the mixture toxicity. The present study is devoted to the further application of linear concentration addition(CA)-based model(LCA) and independent action(IA)-based model(LIA) to predict the non-interactive mixture toxicity. The 26 mixtures including 312 data points were used to evaluate the predictive powers of LCA and LIA models. The models were internally validated using the leave-one-out cross-validation and y-randomization test, and the external validations were evaluated by the test tests. Both LCA and LIA models agree well with the experimental values for all mixture toxicity, and present high internally(R2 and Q2 〉 0.98) and externally(Q2F1, Q2F2, and Q2F3 〉 0.99) predictive power. The use of LCA and LIA led to improved predictions compared to the estimates based on the CA and IA models. Both LCA and LIA were found to be appropriate methods for modeling toxicity of non-interactive chemical mixtures.展开更多
Insufficient insulin production or action in diabetic states is associated with growth retardation and impaired bone healing, while the underling mechanisms are unknown. In this study, we sought to define the role of ...Insufficient insulin production or action in diabetic states is associated with growth retardation and impaired bone healing, while the underling mechanisms are unknown. In this study, we sought to define the role of insulin signaling in the growth plate. Insulin treatment of embryonic metatarsal bones from wild-type mice increased chondrocyte proliferation. Mice lacking insulin receptor (IR) selectively in chondrocytes (CartIR-/-) had no discernable differences in total femoral length compared to control littermates. However, CartIR-/- mice exhibited an increase in chondrocyte numbers in the growth plate than that of the controls. Chondrocytes lacking IR had elevated insulin-like growth factor (IGF)-IR mRNA and protein levels. Subsequently, IGF-1 induced phosphorylafion of Akt and ERK was enhanced, while this action was eliminated when the cells were treated with IGF-1R inhibitor Picropodophyllin. Deletion of the IR impaired chondrogenic differentiation, and the effect could not be restored by treatment of insulin, but partially rescued by IGF-1 treatment. Intriguingly, the size of hypertrophic chondrocytes was smaller in CartIR-/- mice when compared with that of the control littermates, which was associated with upregnlation of tuberous sclerosis complex 2 (TSC2). These results suggest that deletion of the IR in chondrocytes sensitizes IGF-1R signaling and action, IR and IGF-1R coordinate to regulate the proliferation, differentiation and hypertrophy of growth plate chondrocytes.展开更多
基金supported by the National Natural Science Foundation of China(21407032,21667013,51578171)Natural Science Foundation of Guangxi Province(2014GXNSFBA118233)Guilin Scientific Research and Technology Development Program(2016012505)
文摘Since it is unrealistic to do an experimental mixture assessment on every possible combination, mathematical model plays an important role in predicting the mixture toxicity. The present study is devoted to the further application of linear concentration addition(CA)-based model(LCA) and independent action(IA)-based model(LIA) to predict the non-interactive mixture toxicity. The 26 mixtures including 312 data points were used to evaluate the predictive powers of LCA and LIA models. The models were internally validated using the leave-one-out cross-validation and y-randomization test, and the external validations were evaluated by the test tests. Both LCA and LIA models agree well with the experimental values for all mixture toxicity, and present high internally(R2 and Q2 〉 0.98) and externally(Q2F1, Q2F2, and Q2F3 〉 0.99) predictive power. The use of LCA and LIA led to improved predictions compared to the estimates based on the CA and IA models. Both LCA and LIA were found to be appropriate methods for modeling toxicity of non-interactive chemical mixtures.
基金supported by the Hong Kong Research Grant Council General Research Fund (RGC GRF 475311)National Natural Science Foundation of China (NSFC81171717, 81130034)+1 种基金Shenzhen Strategic Development Fund (GJHS20120702105445379)the Chinese University of Hong Kong Direct Grant 2041545 to CW
文摘Insufficient insulin production or action in diabetic states is associated with growth retardation and impaired bone healing, while the underling mechanisms are unknown. In this study, we sought to define the role of insulin signaling in the growth plate. Insulin treatment of embryonic metatarsal bones from wild-type mice increased chondrocyte proliferation. Mice lacking insulin receptor (IR) selectively in chondrocytes (CartIR-/-) had no discernable differences in total femoral length compared to control littermates. However, CartIR-/- mice exhibited an increase in chondrocyte numbers in the growth plate than that of the controls. Chondrocytes lacking IR had elevated insulin-like growth factor (IGF)-IR mRNA and protein levels. Subsequently, IGF-1 induced phosphorylafion of Akt and ERK was enhanced, while this action was eliminated when the cells were treated with IGF-1R inhibitor Picropodophyllin. Deletion of the IR impaired chondrogenic differentiation, and the effect could not be restored by treatment of insulin, but partially rescued by IGF-1 treatment. Intriguingly, the size of hypertrophic chondrocytes was smaller in CartIR-/- mice when compared with that of the control littermates, which was associated with upregnlation of tuberous sclerosis complex 2 (TSC2). These results suggest that deletion of the IR in chondrocytes sensitizes IGF-1R signaling and action, IR and IGF-1R coordinate to regulate the proliferation, differentiation and hypertrophy of growth plate chondrocytes.