期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Speech Enhancement Algorithm Based on MMSE Short Time Spectral Amplitude in Whispered Speech 被引量:1
1
作者 Zhi-Heng Lu Huai-Zong Shao Tai-Liang Ju 《Journal of Electronic Science and Technology of China》 2009年第2期115-118,共4页
An improved method based on minimum mean square error-short time spectral amplitude (MMSE-STSA) is proposed to cancel background noise in whispered speech. Using the acoustic character of whispered speech, the algor... An improved method based on minimum mean square error-short time spectral amplitude (MMSE-STSA) is proposed to cancel background noise in whispered speech. Using the acoustic character of whispered speech, the algorithm can track the change of non-stationary background noise effectively. Compared with original MMSE-STSA algorithm and method in selectable mode Vo-coder (SMV), the improved algorithm can further suppress the residual noise for low signal-to-noise radio (SNR) and avoid the excessive suppression. Simulations show that under the non-stationary noisy environment, the proposed algorithm can not only get a better performance in enhancement, but also reduce the speech distortion. 展开更多
关键词 Index Terms-Minimum mean square error shorttime spectral amplitude (MMSE-STSA) speechenhancement whispered speech.
下载PDF
A new integration scheme for application to seismic hybrid simulation
2
作者 Maedeh Zakersalehi Abbas Ali Tasnimi Mehdi Ahmadizadeh 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2017年第1期69-81,共13页
Hybrid simulation is a powerful test method for evaluating the seismic performance of structural systems. This method makes it feasible that only critical components of a structure be experimentally tested. This paper... Hybrid simulation is a powerful test method for evaluating the seismic performance of structural systems. This method makes it feasible that only critical components of a structure be experimentally tested. This paper presents a newly proposed integration algorithm for seismic hybrid simulation which is aimed to extend its capabilities to a wide range of systems where existing methods encounter some limitations. In the proposed method, which is termed the variable time step (VTS) integration method, an implicit scheme is employed for hybrid simulation by eliminating the iterative phase on experimental element, the phase which is necessary in regular implicit applications. In order to study the effectiveness of the VTS method, a series of numerical investigations are conducted which show the successfulness of the VTS method in obtaining accurate, stable and converged responses. Then, in a comparative approach, the improved accuracy of the VTS method over commonly used integration methods is demonstrated. The stability of the VTS method is also studied and the results show that it provides conditional stability; however, its stability limit is well beyond the accuracy limit. The effect of time delay on the VTS method results is also investigated and it is shown that the VTS method is quite successful in handling this experimental error. 展开更多
关键词 seismic hybrid simulation numerical integration ACCURACY STABILITY error index time delay
下载PDF
Error analysis and optimization of a 3-degree of freedom translational Parallel Kinematic Machine 被引量:1
3
作者 S. SHANKAR GANESH A. B. KOTESWARA RAO 《Frontiers of Mechanical Engineering》 SCIE CSCD 2014年第2期120-129,共10页
In this paper, error modeling and analysis of a typical 3-degree of freedom translational Parallel Kine- matic Machine is presented. This mechanism provides translational motion along the Cartesian X-, Y- and Z- axes.... In this paper, error modeling and analysis of a typical 3-degree of freedom translational Parallel Kine- matic Machine is presented. This mechanism provides translational motion along the Cartesian X-, Y- and Z- axes. It consists of three limbs each having an arm and forearm with prismatic-revolute-revolute-revolute joints. The moving or tool platform maintains same orientation in the entire workspace due to its joint arrangement. From inverse kinematics, the joint angles for a given position of tool platform necessary for the error modeling and analysis are obtained. Error modeling is done based on the differentiation of the inverse kinematic equations. Variation of pose errors along X, Y and Z directions for a set of dimensions of the parallel kinematic machine is presented. A non-dimensional performance index, namely, global error transformation index is used to study the influence of dimensions and its corresponding global maximum pose error is reported. An attempt is made to find the optimal dimensions of the Parallel Kinematic Machine using Genetic Algorithms in MATLAB. The methodology presented and the results obtained are useful for predicting the performance capability of the Parallel Kinematic Machine under study. 展开更多
关键词 translational Parallel Kinematic Machine error modeling global error transformation index
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部