Stability of indirect field-oriented control (IFOC) of induction motor drives is greatly influenced by estimated value of rotor time constant. By choosing estimation error of rotor time constant as bifurcation paramet...Stability of indirect field-oriented control (IFOC) of induction motor drives is greatly influenced by estimated value of rotor time constant. By choosing estimation error of rotor time constant as bifurcation parameter, the conditions of generating Hopf bifurcation in IFOC drives are analyzed. Dynamic responses and Lyapunov exponents show that chaos and limit cycles will arise for some ranges of load torque with certain PI speed controller setting. Stable drives are required for conventional applications, but chaotic rotation can promote efficiency or improve dynamic characteristics of drives. Thus, the study may be a guideline for designing a stable system or an oscillating system.展开更多
This paper deals a detailed performance investigation of asymmetrical six-phase grid connected induction generator(GCIG)in two proposed configurations in variable speed operation.During the system development,regulati...This paper deals a detailed performance investigation of asymmetrical six-phase grid connected induction generator(GCIG)in two proposed configurations in variable speed operation.During the system development,regulation of DC-link voltage has been proposed using particle swarm optimization(PSO)based PI controller,ensuring the power flow to utility grid through back to back converters.The closed loop operation of asymmetrical six-phase GCIG using indirect field oriented control in different configurations has been carried out in Matlab/Simulink environment.Analytical results have been verified using real time test results on virtual platform of Typhoon HIL supported with some experimental validation.展开更多
Maximizing the power capture is an important issue to the turbines that are installed in low wind speed area. In this paper, we focused on the modeling and control of variable speed wind turbine that is composed of tw...Maximizing the power capture is an important issue to the turbines that are installed in low wind speed area. In this paper, we focused on the modeling and control of variable speed wind turbine that is composed of two-mass drive train, a Squirrel Cage Induction Generator (SCIG), and voltage source converter control by Space Vector Pulse Width Modulation (SPVWM). To achieve Maximum Power Point Tracking (MPPT), the reference speed to the generator is searched via Extremum Seeking Control (ESC). ESC was designed for wind turbine region II operation based on dither-modulation scheme. ESC is a model-free method that has the ability to increase the captured power in real time under turbulent wind without any requirement for wind measurements. The controller is designed in two loops. In the outer loop, ESC is used to set a desired reference speed to PI controller to regulate the speed of the generator and extract the maximum electrical power. The inner control loop is based on Indirect Field Orientation Control (IFOC) to decouple the currents. Finally, Particle Swarm Optimization (PSO) is used to obtain the optimal PI parameters. Simulation and control of the system have been accomplished using MATLAB/Simulink 2014.展开更多
Rotor flux and torque of an induction motor (IM) are decoupled to obtain performance of DC motor. The decoupling strategy has been developed in terms of stator current components where the core loss is neglected. Many...Rotor flux and torque of an induction motor (IM) are decoupled to obtain performance of DC motor. The decoupling strategy has been developed in terms of stator current components where the core loss is neglected. Many different controllers including fuzzy logic controller (FLC) with neglecting core loss have been designed to control the speed of induction motor. The outcome of investigation about the effect of core loss on indirect field oriented control (IFOC) has been concluded that the actual flux and torque are not reached to the reference flux and torque if core loss is neglected. Thus, the purpose of this paper is to propose a fuzzy logic speed controller of induction motor where flux and torque decoupling strategy is decoupled in terms of magnetizing current instead of stator current to alleviate the effects of core loss. The performances of proposed fuzzy-logic-based controller have been verified by computer simulation. The simulation of speed control of IM using PI and FLC are performed. The simulation study for high-performance control of IM drive shows the superiority of the proposed fuzzy logic controller over the conventional PI controller.展开更多
基金This work was supported by the National Natural Science Foundation of China (No,50177009) and Guangdong Natural Science Foundation (No.011652) .
文摘Stability of indirect field-oriented control (IFOC) of induction motor drives is greatly influenced by estimated value of rotor time constant. By choosing estimation error of rotor time constant as bifurcation parameter, the conditions of generating Hopf bifurcation in IFOC drives are analyzed. Dynamic responses and Lyapunov exponents show that chaos and limit cycles will arise for some ranges of load torque with certain PI speed controller setting. Stable drives are required for conventional applications, but chaotic rotation can promote efficiency or improve dynamic characteristics of drives. Thus, the study may be a guideline for designing a stable system or an oscillating system.
文摘This paper deals a detailed performance investigation of asymmetrical six-phase grid connected induction generator(GCIG)in two proposed configurations in variable speed operation.During the system development,regulation of DC-link voltage has been proposed using particle swarm optimization(PSO)based PI controller,ensuring the power flow to utility grid through back to back converters.The closed loop operation of asymmetrical six-phase GCIG using indirect field oriented control in different configurations has been carried out in Matlab/Simulink environment.Analytical results have been verified using real time test results on virtual platform of Typhoon HIL supported with some experimental validation.
文摘Maximizing the power capture is an important issue to the turbines that are installed in low wind speed area. In this paper, we focused on the modeling and control of variable speed wind turbine that is composed of two-mass drive train, a Squirrel Cage Induction Generator (SCIG), and voltage source converter control by Space Vector Pulse Width Modulation (SPVWM). To achieve Maximum Power Point Tracking (MPPT), the reference speed to the generator is searched via Extremum Seeking Control (ESC). ESC was designed for wind turbine region II operation based on dither-modulation scheme. ESC is a model-free method that has the ability to increase the captured power in real time under turbulent wind without any requirement for wind measurements. The controller is designed in two loops. In the outer loop, ESC is used to set a desired reference speed to PI controller to regulate the speed of the generator and extract the maximum electrical power. The inner control loop is based on Indirect Field Orientation Control (IFOC) to decouple the currents. Finally, Particle Swarm Optimization (PSO) is used to obtain the optimal PI parameters. Simulation and control of the system have been accomplished using MATLAB/Simulink 2014.
文摘Rotor flux and torque of an induction motor (IM) are decoupled to obtain performance of DC motor. The decoupling strategy has been developed in terms of stator current components where the core loss is neglected. Many different controllers including fuzzy logic controller (FLC) with neglecting core loss have been designed to control the speed of induction motor. The outcome of investigation about the effect of core loss on indirect field oriented control (IFOC) has been concluded that the actual flux and torque are not reached to the reference flux and torque if core loss is neglected. Thus, the purpose of this paper is to propose a fuzzy logic speed controller of induction motor where flux and torque decoupling strategy is decoupled in terms of magnetizing current instead of stator current to alleviate the effects of core loss. The performances of proposed fuzzy-logic-based controller have been verified by computer simulation. The simulation of speed control of IM using PI and FLC are performed. The simulation study for high-performance control of IM drive shows the superiority of the proposed fuzzy logic controller over the conventional PI controller.