Key factors for capillary electrophoresis of amino acids with indirect ultraviolet detection were illustrated. Buffer compositions and additives were found to be influential as expected, while buffer pH was shown to b...Key factors for capillary electrophoresis of amino acids with indirect ultraviolet detection were illustrated. Buffer compositions and additives were found to be influential as expected, while buffer pH was shown to be particularly critical to the separation and detection. The effect of pH also depended on the electrophoretic mode used. Ways to obtain recurring and selective were suggested.展开更多
A method was developed for the determination of tetraethyl ammonium (TEA) by reversed-phase ion- pair chromatography with indirect ultraviolet detection, Chromatographic separation was achieved on a reversed-phase C...A method was developed for the determination of tetraethyl ammonium (TEA) by reversed-phase ion- pair chromatography with indirect ultraviolet detection, Chromatographic separation was achieved on a reversed-phase C18 column using background ultraviolet absorbing reagent - ion-pair reagent - organic solvent as mobile phase. The effects of the background ultraviolet absorbing reagents, detection wavelength, ion-pair reagents, organic solvents and column temperature on the determination method were investigated and the retention rules discussed. Results found that TEA could be successfully analyzed by using 0.7 mmol/L 4-aminophenol hydrochloride and 0.15 mmol/L 1-heptanesulfonic acid sodium mixed with 20% (v/v) methanol as mobile phase at a UV detection wavelength of 230 nm. Under these conditions, the retention time of tetraethyl ammonium was 2.85 min. The detection limit (S/N = 3) for TEA was 0.06 mg/L. The relative standard deviations (n = 5) for peak area and retention time were 0.35% and 0.02%, respectively. The method has been successfully applied to the determination of synthesized tetraethyl ammonium bromide. Recovery of tetraethyl ammonium after spiking was 99.1%.展开更多
A novel analytical method was developed for determining morpholinium cations lacking ultraviolet absorption groups.This determination was carried out by high performance liquid chromatographyindirect ultraviolet(HPLC...A novel analytical method was developed for determining morpholinium cations lacking ultraviolet absorption groups.This determination was carried out by high performance liquid chromatographyindirect ultraviolet(HPLC-1UV) detection using imidazolium ionic liquid as background absorption reagents,and imidazolium ionic liquid aq.soln.-organic solvent as mobile phase by a reversed-phase C18 column.The background ultraviolet absorption reagents,imidazolium ionic liquids and organic solvents were investigated.The imidazolium ionic liquid in the mobile phase is not only the background ultraviolet absorption reagent for IUV,but also an active component to improve the separation of morpholinium cations.It was found that morpholinium cations could be adequately determined when0.5 mmol/L 1-ethyl-3-methylimidazolium tetrafluoroborate aq.soln./methanol(80:20,v/v) was used as mobile phase with an IUV detection wavelength of 210 nm.In this study,the baseline separation of Nmethyl,ethylmorpholinium cations(MEMo) and N-methyl.propylmorpholinium cations(MPMo) was successfully achieved in 8.5 min.The detection limits(S/N = 3) for MEMo and MPMo were 0.15 and0.29 mg/L,respectively.This simple and practical method has been successfully applied to the determination of two morpholinium ionic liquids synthesized by the chemistry laboratory.展开更多
基金National Natural Natural Science Foundation of China !(No.29635020) the Chinese Academy of Sciences!(No. KJ951-A1-507)
文摘Key factors for capillary electrophoresis of amino acids with indirect ultraviolet detection were illustrated. Buffer compositions and additives were found to be influential as expected, while buffer pH was shown to be particularly critical to the separation and detection. The effect of pH also depended on the electrophoretic mode used. Ways to obtain recurring and selective were suggested.
基金supported by the Natural Science Foundation of Heilongjiang Province(Grant No.B201307)the Ministry of Education of Heilongjiang Province(No.12531192)the Program for Scientific and Technological Innovation Team Construction in Universities of Heilongjiang Province(No. 2011TD010)
文摘A method was developed for the determination of tetraethyl ammonium (TEA) by reversed-phase ion- pair chromatography with indirect ultraviolet detection, Chromatographic separation was achieved on a reversed-phase C18 column using background ultraviolet absorbing reagent - ion-pair reagent - organic solvent as mobile phase. The effects of the background ultraviolet absorbing reagents, detection wavelength, ion-pair reagents, organic solvents and column temperature on the determination method were investigated and the retention rules discussed. Results found that TEA could be successfully analyzed by using 0.7 mmol/L 4-aminophenol hydrochloride and 0.15 mmol/L 1-heptanesulfonic acid sodium mixed with 20% (v/v) methanol as mobile phase at a UV detection wavelength of 230 nm. Under these conditions, the retention time of tetraethyl ammonium was 2.85 min. The detection limit (S/N = 3) for TEA was 0.06 mg/L. The relative standard deviations (n = 5) for peak area and retention time were 0.35% and 0.02%, respectively. The method has been successfully applied to the determination of synthesized tetraethyl ammonium bromide. Recovery of tetraethyl ammonium after spiking was 99.1%.
基金supported by the Natural Science Foundation of Heilongjiang Province(No.B201307)the Ministry of Education of Heilongjiang Province(No.12531192)the Program for Scientific and Technological Innovation Team Construction in Universities of Heilongjiang Province(No.2011TD010)
文摘A novel analytical method was developed for determining morpholinium cations lacking ultraviolet absorption groups.This determination was carried out by high performance liquid chromatographyindirect ultraviolet(HPLC-1UV) detection using imidazolium ionic liquid as background absorption reagents,and imidazolium ionic liquid aq.soln.-organic solvent as mobile phase by a reversed-phase C18 column.The background ultraviolet absorption reagents,imidazolium ionic liquids and organic solvents were investigated.The imidazolium ionic liquid in the mobile phase is not only the background ultraviolet absorption reagent for IUV,but also an active component to improve the separation of morpholinium cations.It was found that morpholinium cations could be adequately determined when0.5 mmol/L 1-ethyl-3-methylimidazolium tetrafluoroborate aq.soln./methanol(80:20,v/v) was used as mobile phase with an IUV detection wavelength of 210 nm.In this study,the baseline separation of Nmethyl,ethylmorpholinium cations(MEMo) and N-methyl.propylmorpholinium cations(MPMo) was successfully achieved in 8.5 min.The detection limits(S/N = 3) for MEMo and MPMo were 0.15 and0.29 mg/L,respectively.This simple and practical method has been successfully applied to the determination of two morpholinium ionic liquids synthesized by the chemistry laboratory.