期刊文献+
共找到8篇文章
< 1 >
每页显示 20 50 100
Effects of SiO_2 and TiO_2 on resistance stabilities of flexible indium-tin-oxide films prepared by ion assisted deposition 被引量:2
1
作者 LI Yuqiong YU Zhinong +3 位作者 WANG Wuyu FAN Yuejiang DING Zhao XUE Wei 《Rare Metals》 SCIE EI CAS CSCD 2009年第6期559-563,共5页
Inorganic buffer layers such as SiO2 or TiO2 and transparent conductive indium-tin-oxide (ITO) films were prepared on polyethylene terephthalate (PET) substrates by ion assisted deposition (IAD) at room temperat... Inorganic buffer layers such as SiO2 or TiO2 and transparent conductive indium-tin-oxide (ITO) films were prepared on polyethylene terephthalate (PET) substrates by ion assisted deposition (IAD) at room temperature, and the effects of SiO2 and TiOzon the bending resistance performance of flexible ITO films were investigated. The results show that ITO films with SiO2 or TiO2 buffer layer have better resistance stabilities compared to ones without the buffer layer when the ITO films are inwards bent at a bending radius more than 1.2 cm and when the ITO films are outwards bent at a bending radius from 0.8 cm to 1.2 cm. 1TO films with SiO2 buffer layer have better resistance sta- bilities compared to ones with TiO2 buffer layer after the ITO fdms are bent several hundreds of cycles at the same bending radius, for the adhesion of SiO2 is stronger than that of TiO2. The compressive stress resulted from inward bending leads to the formation of more defects in the ITO films compared with the tensile stress arising from outward bending. SiO2 and TiO2 buffer layers can effectively improve the crystallinity of ITO films in (400), (440) directions. 展开更多
关键词 indium-tin-oxide (ITO) inorganic buffer layers bending resistance performance stress ion assisted deposition (IAD)
下载PDF
Dependence of Performance of Organic Light-emitting Devices on Sheet Resistance of Indium-tin-oxide Anodes 被引量:2
2
作者 ZHOU Liang ZHANG Hong-jie YU Jiang-bo MENG Qing-guo PENG Chun-yun LIU Feng-yi DENG Rui-ping PENG Ze-ping LI Zhe-feng 《Chemical Research in Chinese Universities》 SCIE CAS CSCD 2006年第4期427-431,共5页
The dependence of the performance of organic light-emitting devices(OLEDs) on the sheet resistance of indiumtin-oxide(ITO) anodes was investigated by measuring the steady state current density brightness voltage c... The dependence of the performance of organic light-emitting devices(OLEDs) on the sheet resistance of indiumtin-oxide(ITO) anodes was investigated by measuring the steady state current density brightness voltage characteristics and the electroluminescent spectra. The device with a higher sheet resistance anode shows a lower current density, a lower brightness level, and a higher operation voltage. The electroluminescence(EL) efficiencies of the devices with the same structure but different ITO anodes show more complicated differences. Furthermore, the shift of the light-emitting zone toward the anode was found when an anode with a higher sheet resistance was used. These performance differences are discussed and attributed to the reduction of hole injection and the increase in voltage drop over ITO anode with the increase in sheet resistance. 展开更多
关键词 Organic light-emitting device(OLED) indium-tin-oxide(ITO) Sheet resistance Balance of holes and electrons
下载PDF
Transparent conducting indium-tin-oxide(ITO) film as full front electrode in Ⅲ–Ⅴ compound solar cell 被引量:1
3
作者 代盼 卢建娅 +6 位作者 谭明 王青松 吴渊渊 季莲 边历峰 陆书龙 杨辉 《Chinese Physics B》 SCIE EI CAS CSCD 2017年第3期495-499,共5页
The application of transparent conducting indium-tin-oxide (ITO) film as full front electrode replacing the conven- tional bus-bar metal electrode in III-V compound GalnP solar cell was proposed. A high-quality, non... The application of transparent conducting indium-tin-oxide (ITO) film as full front electrode replacing the conven- tional bus-bar metal electrode in III-V compound GalnP solar cell was proposed. A high-quality, non-rectifying contact between ITO and 10 nm N+-GaAs contact layer was formed, which is benefiting from a high carrier concentration of the terrilium-doped N+-GaAs layer, up to 2×10^19 cm^-3. A good device performance of the GalnP solar cell with the ITO electrode was observed. This result indicates a great potential of transparent conducting films in the future fabrication of larger area flexible III-V solar cell. 展开更多
关键词 full indium-tin-oxide (ITO) electrode specific contact resistance solar cell
下载PDF
GaN-based light-emitting diodes with hybrid micro/nano-textured indium-tin-oxide layer 被引量:1
4
作者 黄华茂 胡金勇 王洪 《Journal of Semiconductors》 EI CAS CSCD 2014年第8期89-93,共5页
Three types of textured indium-tin-oxide (ITO) surface, including nano-texturing and hybrid micro/nano-texturing with micro-holes (concave-hybrid-pattem) or micro-pillars (convex-hybrid-pattern), were applied to... Three types of textured indium-tin-oxide (ITO) surface, including nano-texturing and hybrid micro/nano-texturing with micro-holes (concave-hybrid-pattem) or micro-pillars (convex-hybrid-pattern), were applied to GaN-based light-emitting diodes (LEDs). The nano-texturing was realized by maskless wet-etching, and the micro-texturing was achieved by standard photolithography and wet-etching. Compared to LED chips with flat ITO surface, those with nano-pattern, concave-hybrid-pattern, and convex-hybrid-pattern exhibit enhancement of 11.3%, 15.8%, and 17.9%, respectively, for the light-output powers at 20 mA. The electrical performance has no degradation. Moreover, the convex-hybrid-pattern show higher light-output efficiency under small injection current, while the concave-hybrid-pattern exhibit better light-output efficiency at large injection current. The light- extraction efficiency is simulated by use of two-dimensional finite difference time domain method, and the numer- ical results are consistent with the experiments. 展开更多
关键词 light-emitting diodes hybrid micro/nano-textured indium-tin-oxide light-output
原文传递
Role of phase separation in nanocomposite indium-tin-oxide films for transparent thermoelectric applications
5
作者 Peter P.Murmu Akhil Shettigar +6 位作者 Shen V.Chong Zihang Liu Dana Goodacre Vedran Jovic Takao Mori Kevin E.Smith John Kennedy 《Journal of Materiomics》 SCIE EI 2021年第3期612-620,共9页
We report that oxygen vacancies have a profound impact on phase separation and thermoelectric properties of ITO films grown at room temperature.Oxygen vacancies in non-stoichiometric In1.8Sn0.2O2.5 films aided the for... We report that oxygen vacancies have a profound impact on phase separation and thermoelectric properties of ITO films grown at room temperature.Oxygen vacancies in non-stoichiometric In1.8Sn0.2O2.5 films aided the formation of In-rich metallic clusters.It yields a high electrical conductivity s=1540 Scm1 and Seebeck coefficient|a|=27.2 mVK1,which resulted in the highest power factor(a2 s=113.8 mW m1 K2)but low optical transmission(Top-25%).An increase in oxygen partial pressure resulted in stochiometric In1.8Sn0.2O3 films which improved the optical transparency by 300%(Top-75.4%),but power factor was reduced by-85%due to a decrease in a and s.A decrease in a was due to the lack of energy filtering of charge carriers in the stoichiometric ITO film which did not have In-rich metallic clusters.XPS results showed that the valence band energy shifts with a change in oxygen partial pressure due to a decrease in carrier density,which implied a change in Fermi energy due to the reverse Moss-Burstein effect.Our results showed that phase separation can be obtained in nanocomposite ITO films by tuning their stoichiometry simply by varying the oxygen partial pressure during deposition of thermoelectric materials at low temperatures. 展开更多
关键词 THERMOELECTRIC indium-tin-oxide(ITO) Seebeck coefficient Power factor X-ray photoelectron spectroscopy(XPS)
原文传递
Low Temperature DC Sputtering Deposition on Indium-Tin Oxide Film and Its Application to Inverted Top-emitting Organic Light-emitting Diodes 被引量:1
6
作者 Hui LIN Junsheng YU Shuangling LOU Jun WANG Yadong JIANG 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2008年第2期179-182,共4页
Indium tin oxide (ITO) ultrathin films were prepared on glass substrate by DC (direct current) magnetron sputtering technique with the assistance of H2O vapor to avoid potential surface damage. The film properties... Indium tin oxide (ITO) ultrathin films were prepared on glass substrate by DC (direct current) magnetron sputtering technique with the assistance of H2O vapor to avoid potential surface damage. The film properties were characterized by X-ray diffraction (XRD) technique, four-point probe method and spectrophotometer. The results show that the deposited ITO film with introduced H2O during sputtering process was almost amorphous. The average visible light transmission of 100 nm ITO film was around 85% and square resistivity was below 80 Ω/square. The film was used as the transparent anode to fabricate an inverted top-emitting organic light-emitting diodes (IT-OLEDs) with the structure of glass substrate/Alq3 (40 nm)/NPB (15 nm)/CuPc (x nm)/ITO anode (100 nm), where the film thickness of CuPc was optimized. It was found that the luminance of this IT-OLEDs was improved from 25 cd/m^2 to more than 527 cd/m^2 by increasing the thickness of CuPc, and luminance efficiency of 0.24 lm/W at 100 cd/m^2 was obtained, which indicated that the optimized thickness of CuPc layer was around 15 nm. 展开更多
关键词 Inverted top-emitting organic light-emitting diodes indium-tin-oxide Ultrathin film DC sputtering
下载PDF
Fabrication and characterization of amorphous ITO/p-Si heterojunction solar cell 被引量:2
7
作者 HE Bo WANG HongZhi +7 位作者 LI YaoGang MA ZhongQuan XU Jing ZHANG QingHong WANG ChunRui XING HuaiZhong ZHAO Lei WANG DunDong 《Science China(Technological Sciences)》 SCIE EI CAS 2013年第8期1870-1876,共7页
Amorphous indium-tin-oxide(a-ITO) film was deposited by radio-frequency(RF) magnetron sputtering at 180°C substrate temperature on the texturized p-Si wafer to fabricate a-ITO/p-Si heterojunction solar cell.The m... Amorphous indium-tin-oxide(a-ITO) film was deposited by radio-frequency(RF) magnetron sputtering at 180°C substrate temperature on the texturized p-Si wafer to fabricate a-ITO/p-Si heterojunction solar cell.The microstructural,optical and electrical properties of the a-ITO film were characterized by XRD,SEM,XPS,UV-VIS spectrophotometer,four-point probe and Hall effect measurement,respectively.The electrical properties of heterojunction were investigated by I-V measurement,which reveals that the heterojunction shows strong rectifying behavior under a dark condition.The ideality factor and the saturation current density of this diode are 2.26 and 1.58×10-4 A cm-2,respectively.And the value of IF/IR(IF and IR stand for forward and reverse currents,respectively) at 1 V is found to be as high as 21.5.For the a-ITO/p-Si heterojunction solar cell,the a-ITO thin film acts not only as an emitter layer,but also as an anti-reflected coating film.The conversion efficiency of the fabricated a-ITO/p-Si heterojunction cell is approximately 1.1%,under 100 mW cm-2 illumination(AM1.5 condition).And the open-circuit voltage(Voc),short-circuit current density(J SC),filll factor(FF) are 280 mV,9.83 mA cm 2 and 39.9%,respectively.Because the ITO film deposited at low temperature is amorphous,it can effectively reduce the interface states between ITO and p-Si.The barrier height and internal electric field,which is near the surface of p-Si,can effectively be enhanced.Thus we can see the great photovoltaic effect. 展开更多
关键词 amorphous indium-tin-oxide(a-ITO) film radio-frequency(RF) magnetron sputtering heterojunction solar cell current-voltage(I-V) characteristics
原文传递
Design of Slant-Form Tool in Precision Reuse of Digital Paper Display
8
作者 Pai-Shan Pa 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2011年第9期846-850,共5页
A reuse fabrication module using micro electroetching as a precision machining process with a new design of a slant-form tool to remove the defective indium-tin-oxide (ITO) nanostructure from the optical polyethylen... A reuse fabrication module using micro electroetching as a precision machining process with a new design of a slant-form tool to remove the defective indium-tin-oxide (ITO) nanostructure from the optical polyethyleneterephthalate (PET) surfaces of digital paper display is presented in current studies. The low yield of ITO thin film deposition is an important factor in optoelectronic semiconductor production. The adopted precision reuse process requires only a short period of time to remove the ITO nanostructure easily and cleanly, which is based on technical and economical considerations and is highly efficient. In the current experiment, a large inclined angle of the cathode and a small end radius of the anode take less time for the same amount of ITO removal. A higher feed rate of the optical PET diaphragm combines with enough electric power to drive fast micro electroetching. A small rotational diameter of the anode accompanied by a small width of the cathode corresponds to a higher removal rate for the ITO nanostructure. A pulsed direct current can improve the effect of dreg discharge and is advantageous to couple this current with the fast feed rate of the workpiece. This improvement is associated with an increase in current rating. High rotational speed of the slant-form tool can improve the effect of dregs discharge and is advantageous to associate with the fast feed rate of the workpiece (optical PET diaphragm). 展开更多
关键词 Reuse fabrication Slant-Form Digital paper display Optical polyethyleneterephthalate (PET) diaphragm indium-tin-oxide (ITO) nanostructure Micro electroetching
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部