In this study, the indoor environmental quality (IEQ) in air conditioned residential buildings in a dry desert climate is examined from the perspective of occupants via two aspects: thermal comfort and indoor air qual...In this study, the indoor environmental quality (IEQ) in air conditioned residential buildings in a dry desert climate is examined from the perspective of occupants via two aspects: thermal comfort and indoor air quality. The study presents statistical data about the domestic-occupant thermal comfort sensations together with data describing the indoor air quality in Kuwaiti residential buildings. With respect to the latter, the overall IEQ acceptance using two measurements namely: physical measurements and subjective information collected via questionnaires, was used to evaluate 111 occupants living in twenty five air-conditioned residential buildings in the state of Kuwait. The operative temperature based on Actual Mean Vote (AMV) and Predicted Mean Vote (PMV) was identified using linear regression analysis of responses on the ASHRAE seven-point thermal sensation scale and was found to be 25.2°C and 23.3°C, respectively, in the summer season. Indoor air quality (IAQ) with respect to carbon dioxide concentration level was compared with the acceptable limits of international standards, i.e. ASHRAE Standard 62.1 [1]. The proposed overall IEQ acceptance findings in residential buildings show CO2 concentration level between 909 and 1250 ppm. However, this may be considered a higher level of CO2 concentration, which may require increasing ventilation rate through window operation or mechanical ventilation.展开更多
The central air conditioning system in an intelligent building (IB) was analyzed and modeled in order to perform the optimization scheduling strategy of the central air conditioning system. A set of models proposed ...The central air conditioning system in an intelligent building (IB) was analyzed and modeled in order to perform the optimization scheduling strategy of the central air conditioning system. A set of models proposed and a type of periodically autoregressive model (PAR) based on the improved genetic algorithms (IGA) were used to perform the optimum energy saving scheduling. The example of the Liangmahe Plaza was taken to show the effectiveness of the methods.展开更多
To study the indoor air qualities(IAQ)of large commercial office buildings in Hunan province of China and the corresponding improvement methods,the IAQ of a large commercial office building in Changsha in July,2008,...To study the indoor air qualities(IAQ)of large commercial office buildings in Hunan province of China and the corresponding improvement methods,the IAQ of a large commercial office building in Changsha in July,2008,is investigated.A questionnaire survey and field tests are used to collect data.According to the data of twelve rooms in this building,objective evaluation and the subjective evaluation of the IAQ are obtained.Almost all of the environmental parameters in these rooms basically meet the standards of the objective evaluation.But the average concentration of carbon dioxide in most rooms cannot reach the value of the cleanliness standards,1 255 mg/m^3.The average acceptability of the IAQ in these rooms is 71%,which is lower than the value of the ASHRAE 55—1992 standards,80%.The proper increase in the wind speed and the indoor fresh air supply can greatly improve the objective evaluation and the subjective evaluation of the IAQ.展开更多
An optimum energy saving scheduling strategy of the central air conditioning system in an intelligent building (IB) was proposed. Based on the system analysis a set of models of the central air conditioning system w...An optimum energy saving scheduling strategy of the central air conditioning system in an intelligent building (IB) was proposed. Based on the system analysis a set of models of the central air conditioning system was established. The periodically autoregressive models (PARM) based on genetic algorithms (GA) were used to predict the next day’s cold load. The improved genetic algorithms (IGA) with stochastic real number coding were used to finish the optimum energy saving scheduling of the system. The simulation results for the building of the Liangmahe Plaza show that the proposed strategy can save energy up to about 24 5%.展开更多
A methodology for identifying volatile organic compounds (VOCs) and determining air quality of indoor air has been developed. The air samples are collected using pump samplers by the inhabitants when they perceive o...A methodology for identifying volatile organic compounds (VOCs) and determining air quality of indoor air has been developed. The air samples are collected using pump samplers by the inhabitants when they perceive odorous and/or discomfort episodes. Glass multi-sorbent tubes are connected to the pump samplers for the retention of VOC. The analysis is performed by automatic thermal desorption (ATD) coupled with gas chromatography-mass spectrometry (GC/MS). This methodology can be applied in cases of sick building syndrome (SBS) evaluation, in which building occupants experience a series of varied symptoms that appear to be linked to time spent in the building. Chemical pollutants concentrations (e.g., VOC) have been described to contribute to SBS. To exemplify the methodology, a qualitative determination and an evaluation of existing VOC were performed in a dwelling where the occupants experienced the SBS symptoms. Higher total VOC (TVOC) levels were detected during episodes in indoor air (1.33 ±1.53 mg/m^3) compared to outdoor air (0.71± 0.46 mg/m^3). The concentrations of individual VOCs, such as ethanol, acetone, isopropanol, 1-butanol, acetic acid, acetonitrile and 1-methoxy-2-propanol, were also higher than the expected for a standard dwelling. The external source of VOC was found to be an undeclared activity of storage and manipulation of solvents located at the bottom of a contiguous building.展开更多
To explore the relationship between summer office set air-conditioning temperature and energy consumption related to air conditioning use to provide human thermal comfort,a comparison experiment was conducted in three...To explore the relationship between summer office set air-conditioning temperature and energy consumption related to air conditioning use to provide human thermal comfort,a comparison experiment was conducted in three similar offices at temperatures of 24,26 and 28 ℃ respectively. A thermal comfort questionnaire survey was conducted. It is demonstrated that air-conditioner energy consumption at the set temperature of 28 ℃ is 113% and 271% lower than at 26 ℃ and 24 ℃,respectively. A linear relationship exists between air-conditioner energy consumption and the indoor and outdoor temperature difference. When comfortably dressed,over 80% of research participants accept the set temperature of 28 ℃. The regression analysis leads to a neutral temperature of 26.2 ℃ and an acceptable temperature of 28.2 ℃ for over 80% of the research participants subjects,indicating that the current 26 ℃ set temperature for offices in summer,required by Chinese General Office of the State Council,can be increased to 28 ℃. Moreover,analysis of predicted mean vote(PMV) index shows that a set temperature of 27 ℃,not 26 ℃,is sufficiently comfortable for office staff wearing long-sleeve shirts,long pants and leather shoes.展开更多
Two building factors-a longer thermal lag of more than one hour for building envelops and a lag of indoor radiation to convert into cooling load-have impact on the instantaneous heat input and instantaneous cooling lo...Two building factors-a longer thermal lag of more than one hour for building envelops and a lag of indoor radiation to convert into cooling load-have impact on the instantaneous heat input and instantaneous cooling load.So the two factors should be taken into account when selecting the weather parameters for air-conditioning system design.This paper developed a new statistic method for the rational selection of coincident solar irradiance,dry-bulb and wet-bulb temperatures.The method was applied to historic weather records of 25 years in Hong Kong to generate coincident design weather data.And the results show that traditional design solar irradiance,dry-bulb and wet-bulb temperatures may be significantly overestimated in many conditions,and the design weather data for the three different constructions is not kept constant.展开更多
Kriging is an interpolation technique that is used to estimate a variable at an unmeasured location from observed values at nearer locations. In this study, it is used to analyze the spatial distributions of the healt...Kriging is an interpolation technique that is used to estimate a variable at an unmeasured location from observed values at nearer locations. In this study, it is used to analyze the spatial distributions of the health risk of indoor air pollution. The study case is an air-conditioned office building that has 16 floors, located in Taipei, Taiwan. The Kriging method is used in drawing health risk maps on the basis of limited sample points and facilitates investigating the possible source of pollution.展开更多
This paper deals with the application of decouple Control theory to temperature and humidi-ty control in air-conditioning system. The decouple control algorithm for bivariable systems isderived applicablly for air-con...This paper deals with the application of decouple Control theory to temperature and humidi-ty control in air-conditioning system. The decouple control algorithm for bivariable systems isderived applicablly for air-conditioning system. The algorithm is used to design a temperatureand humidity computer control system for the preprocessing chamber of air-conditioning testequipment. The results of the real-time control experiments indicate that the decouple controlalgorithm is feasible, the control quality is improved and high control precision is achieved.展开更多
Indoor air environment includes indoor thermal environment and air quality, and a reasonable ventilation provides guarantee for a good indoor environment. A numerical study of the indoor environment in different venti...Indoor air environment includes indoor thermal environment and air quality, and a reasonable ventilation provides guarantee for a good indoor environment. A numerical study of the indoor environment in different ventilation is presented in this paper. The External Energy Saving Lab of the WenYuan Building was selected for this purpose, and its indoor air quality and thermal performance in the typical summer climate were simulated. For the numerical simulation, the techniques of Fluent Air-pak was adopted to establish the physical and numerical model of lab. A attention is given to the velocity field and the distribution of pollutant concentration, followed by a discussion of two ventilation modes (displacement ventilation and up-in and up-out ventilation). By comparison, it is found that the Displacement ventilation in improving indoor air quality is obviously superior to the traditional up-in and up-out ventilation.展开更多
Complaints on the indoor environment of the residents in recent decades have become a common problem in the Swedish housing. The buildings themselves are said to be the cause of problems, and it is given a vague pictu...Complaints on the indoor environment of the residents in recent decades have become a common problem in the Swedish housing. The buildings themselves are said to be the cause of problems, and it is given a vague picture of both the exposure and the effect of the problems. The symptoms that residents and users state are often common in the population such as headache, fatigue, mucosal disorders and skin problems. It must be considered that the air that people routinely inhale contains impurities of various kinds, both in- and outdoors. An important source of contamination indoors is the microorganisms that are pathogenic, so called agents. Examples of infectious agents are viruses, fungi, bacteria and protozoa. The purpose of this project is to examine whether a physical measurement is possible to obtain for identifying a possible threshold level of air pollution in the indoor environment. In this study, carried out through physical measurements, the results show major deficiencies in the Swedish school environment. If we study the emissions in the important health-related size range of particles larger than 5.0 microns, before and after measures, the environmental benefits are clarified since over 90% of contaminants larger than 5.0 microns have been eliminated.展开更多
Based on analysis of the reason and process of condensation on ceiling radiant cooling panels, two kinds of arrangement of detectors are put forward. The physical model is established, the results show that detectors ...Based on analysis of the reason and process of condensation on ceiling radiant cooling panels, two kinds of arrangement of detectors are put forward. The physical model is established, the results show that detectors are arranged as the form of triangle is more suitable. It can not only satisfy the use requirement but also it is economical and practical. Finally we can conclude that the inlet water temperature 0.5°C higher than dew point temperature is safe and reliable.展开更多
2022 Indoor Air Quality(IAQ),particularly in educational facilities,is gaining considerable interest and is a synonymous indicator towards evaluating human comfort.Factors such as CO_(2) concentration,temperature,and ...2022 Indoor Air Quality(IAQ),particularly in educational facilities,is gaining considerable interest and is a synonymous indicator towards evaluating human comfort.Factors such as CO_(2) concentration,temperature,and humidity play crucial parts in determining an acceptable level of IAQ.Many studies have also demonstrated that the indoor air quality of classrooms affects students’concentration and performance.Today with the threat of a global pandemic,the demand of clean&fresh indoor air quality in education buildings is extremely intensive.This study focuses on investigating IAQ situations and changes in different typical functional spaces of a higher education building in the UK.CO_(2),temperature,and humidity data in various learning environment were monitored via data loggers during the winter.Associated with data monitoring,a set of questionnaires surveys were carried out to evaluate the user’s experience.The results of this study show that temperature and CO_(2) concentration in the classrooms was constantly higher than the government guidance on a daily basis.The analysis also shows that temperature and humidity increased with CO_(2) levels,but at a much lower rate.This study has revealed poor and concerning IAQ in higher education buildings in the UK,particularly in larger rooms with high occupancy.Along with the findings,this paper also identifies possible impact or factors and proposes solutions to overcome these issues.展开更多
The thermal environmental characteristics are experim-entally studied in terms of different air supply volumes and outdoor meteorological parameters in a large-space building which is air conditioned with a low sidewa...The thermal environmental characteristics are experim-entally studied in terms of different air supply volumes and outdoor meteorological parameters in a large-space building which is air conditioned with a low sidewall air supply.The experimental results show that the indoor vertical temperature distributions under different condition are similar.The maximum vertical temperature difference(MVTD)is up to about 20 ℃,and it linearly changes with the sol-air temperature.The indoor vertical temperature gradients(VTGs)in the upper,central and lower zones are different.The influence of the sol-air temperature on the VTGs in the upper and the lower zones is greater than that in the central zone.The characteristics of the VTGs in the three zones affected by the air supply volume are the same as those affected by the sol-air temperature.Besides,because of the small air velocity,the predicted mean vote(PMV)on comfort in the occupied zone is slightly high and the air temperature difference between the head and the ankle is usually more than 3 ℃.展开更多
Building Energy Management Systems(BEMS)are computer-based systems that aid in managing,controlling,and monitoring the building technical services and energy consumption by equipment used in the building.The effective...Building Energy Management Systems(BEMS)are computer-based systems that aid in managing,controlling,and monitoring the building technical services and energy consumption by equipment used in the building.The effectiveness of BEMS is dependent upon numerous factors,among which the operational characteristics of the building and the BEMS control parameters also play an essential role.This research develops a user-driven simulation tool where users can input the building parameters and BEMS controls to determine the effectiveness of their BEMS.The simulation tool gives the user the flexibility to understand the potential energy savings by employing specific BEMS control and help in making intelligent decisions.The simulation is developed using Visual Basic Application(VBA)in Microsoft Excel,based on discrete-event Monte Carlo Simulation(MCS).The simulation works by initially calculating the energy required for space cooling and heating based on current building parameters input by the user in the model.Further,during the second simulation,the user selects all the BEMS controls and improved building envelope to determine the energy required for space cooling and heating during that case.The model compares the energy consumption from the first simulation and the second simulation.Then the simulation model will provide the rating of the effectiveness of BEMS on a continuous scale of 1 to 5(1 being poor effectiveness and 5 being excellent effectiveness of BEMS).This work is intended to facilitate building owner/energy managers to analyze the building energy performance concerning the efficacy of their energy management system.展开更多
Indoor Air Quality(IAQ)has been an area of growing concern with the increasing knowledge of health hazards associated with contaminants,particularly in high occupancy buildings where residents may be exposed to high l...Indoor Air Quality(IAQ)has been an area of growing concern with the increasing knowledge of health hazards associated with contaminants,particularly in high occupancy buildings where residents may be exposed to high levels of nuisance dust and other contaminants.Leadership and Energy in Environmental Design(LEED®)certification,which is awarded to buildings that prioritize sustainability and efficient resource use,has been increasingly sought in new construction.As LEED-certified buildings become more commonplace,it is worthwhile to consider whether these new building practices improve IAQ for its occupants.This study compares particulate matter(PM)concentrations in 12 LEED-certified buildings to 12 analogous non-LEED certified buildings on the University of Utah campus.Real-time air sampling was conducted in each building for PM measurements and a Wilcoxon signed rank test was conducted to compare PM levels.A statistically significant difference was found between LEED certification and PM concentrations,with LEED-certified buildings containing,on average,approximately half the PM of their non-LEED counterparts.These findings suggest that LEED certification is worth the financial investment,as it may lead to improved IAQ for residents.However,further research on other contaminants is warranted,including the characterization and comparison of formaldehyde and carbon dioxide levels.展开更多
Different cities have different climate conditions and outdoor temperature and humidity, so the scheme of an environment control in subway should be analyzed by considering objective conditions, project cost and opera...Different cities have different climate conditions and outdoor temperature and humidity, so the scheme of an environment control in subway should be analyzed by considering objective conditions, project cost and operating status. In this paper, a physical and mathematical model is built according to the design of Shenyang subway (line 1), the boundary conditions of the model are defined by the design and experiments, the numerical analysis of ventilating scheme and air conditioning scheme is introduced individually, and the temperature field and air flow field of the two schemes are compared, so that the feasibility of using a ventilating scheme in subway of northeast cities is discussed. Considering comfort and economy, it can be concluded that mechanical ventilation is feasible in subway of northeast cities because the air temperature there is not very high in summer.展开更多
Products used during construction and operation of a building can contribute to Indoor Air Quality(IAQ)problems that affect occupants’well-being.However,IAQ is conventionally not addressed in the life cycle assessmen...Products used during construction and operation of a building can contribute to Indoor Air Quality(IAQ)problems that affect occupants’well-being.However,IAQ is conventionally not addressed in the life cycle assessments(LCAs)of buildings and building related products even though IAQ leads to one of the areas of protection under LCA-human health impacts.In this study,we proposed an overall framework for integrating IAQ into LCA using the standard steps of LCA.The framework focused on IAQ and LCA modeling from two categories of building related products:i)passive products that realize their function through initial installation and have long-term decayed emissions,and ii)active equipment that realize their function and cause emissions through daily operation.Dynamic and static life cycle inventory modeling approaches were proposed for passive products and active equipment,respectively.An indoor intake fraction equation and USEtox model effect factors were incorporated into the life cycle impact assessment.Three hypothetical examples were presented to illustrate the calculation procedure of the framework.We concluded that it was feasible to integrate IAQ into building related LCA studies.Development of IAQ related impact assessment methodologies can improve upon the limitations of this study.Further studies need to be carried out to compare the health impacts from IAQ related sources to other life cycle stages of building related products.展开更多
Poor indoor air quality is a large problem in Swedish schools, since the health of occupants may be affected. The building itself is often in focus and other building-related problems may be neglected. The hypothesis ...Poor indoor air quality is a large problem in Swedish schools, since the health of occupants may be affected. The building itself is often in focus and other building-related problems may be neglected. The hypothesis of this study is that factors other than the building itself have decisive influence on indoor environment. An assessment of these nonspecific building-related reasons for bad indoor environment has been made in the present work using surveys combined with particle measurements and comfort measurements (air humidity and air temperature). People are experiencing poor indoor air quality, the air is too dry and the temperature is uneven and uncomfortable indoors in the winter. It is important to highlight the problem of indoor environments with high particulate emissions especially in the range from 5.0 microns and larger since they are conveyers of allergens and bacteria, combined with dry air. An interesting observation regarding the ventilation system is that mechanical systems are tending to generate drier indoor air than the natural ventilation system. Results show that it is possible to decrease emissions through eliminating activity-related sources of airborne contaminants and better the comfort indoors with relatively simple measures.展开更多
By comparing the thermal performance parameters of an ordinary wall room with a phase change wall (PCW) room,the effect of phase change wallboard on the fluctuation of temperature in air-conditioning room in summer wa...By comparing the thermal performance parameters of an ordinary wall room with a phase change wall (PCW) room,the effect of phase change wallboard on the fluctuation of temperature in air-conditioning room in summer was studied. And PCW room and an ordinary wall room,which are cooled by air-conditioner,were built up. Differential scanning calorimetry (DSC) was used to test the temperature field and heat flow fluctuation in these rooms. Through analyzing the data tested,it is found that the mean temperature of PCW is lower than that of ordinary wall room by 1-2 ℃,and PCW can lower the heat flow by 4.6 W/m2. Combining phase change material to building envelope can lower the indoor temperature,make the room thermal comfortable,and cut down the turn-on-and-off frequency of air-conditioner,the primary investment and operating costs. It alleviates urgent need of the electric power. Building envelope which contains phase change wallboard can improve the indoor thermal environment,and decrease energy consumption in buildings. Phase change wallboard can make impressive effect on energy efficiency of buildings.展开更多
文摘In this study, the indoor environmental quality (IEQ) in air conditioned residential buildings in a dry desert climate is examined from the perspective of occupants via two aspects: thermal comfort and indoor air quality. The study presents statistical data about the domestic-occupant thermal comfort sensations together with data describing the indoor air quality in Kuwaiti residential buildings. With respect to the latter, the overall IEQ acceptance using two measurements namely: physical measurements and subjective information collected via questionnaires, was used to evaluate 111 occupants living in twenty five air-conditioned residential buildings in the state of Kuwait. The operative temperature based on Actual Mean Vote (AMV) and Predicted Mean Vote (PMV) was identified using linear regression analysis of responses on the ASHRAE seven-point thermal sensation scale and was found to be 25.2°C and 23.3°C, respectively, in the summer season. Indoor air quality (IAQ) with respect to carbon dioxide concentration level was compared with the acceptable limits of international standards, i.e. ASHRAE Standard 62.1 [1]. The proposed overall IEQ acceptance findings in residential buildings show CO2 concentration level between 909 and 1250 ppm. However, this may be considered a higher level of CO2 concentration, which may require increasing ventilation rate through window operation or mechanical ventilation.
文摘The central air conditioning system in an intelligent building (IB) was analyzed and modeled in order to perform the optimization scheduling strategy of the central air conditioning system. A set of models proposed and a type of periodically autoregressive model (PAR) based on the improved genetic algorithms (IGA) were used to perform the optimum energy saving scheduling. The example of the Liangmahe Plaza was taken to show the effectiveness of the methods.
基金The National Natural Science Foundation of China(No.50878078)
文摘To study the indoor air qualities(IAQ)of large commercial office buildings in Hunan province of China and the corresponding improvement methods,the IAQ of a large commercial office building in Changsha in July,2008,is investigated.A questionnaire survey and field tests are used to collect data.According to the data of twelve rooms in this building,objective evaluation and the subjective evaluation of the IAQ are obtained.Almost all of the environmental parameters in these rooms basically meet the standards of the objective evaluation.But the average concentration of carbon dioxide in most rooms cannot reach the value of the cleanliness standards,1 255 mg/m^3.The average acceptability of the IAQ in these rooms is 71%,which is lower than the value of the ASHRAE 55—1992 standards,80%.The proper increase in the wind speed and the indoor fresh air supply can greatly improve the objective evaluation and the subjective evaluation of the IAQ.
文摘An optimum energy saving scheduling strategy of the central air conditioning system in an intelligent building (IB) was proposed. Based on the system analysis a set of models of the central air conditioning system was established. The periodically autoregressive models (PARM) based on genetic algorithms (GA) were used to predict the next day’s cold load. The improved genetic algorithms (IGA) with stochastic real number coding were used to finish the optimum energy saving scheduling of the system. The simulation results for the building of the Liangmahe Plaza show that the proposed strategy can save energy up to about 24 5%.
文摘A methodology for identifying volatile organic compounds (VOCs) and determining air quality of indoor air has been developed. The air samples are collected using pump samplers by the inhabitants when they perceive odorous and/or discomfort episodes. Glass multi-sorbent tubes are connected to the pump samplers for the retention of VOC. The analysis is performed by automatic thermal desorption (ATD) coupled with gas chromatography-mass spectrometry (GC/MS). This methodology can be applied in cases of sick building syndrome (SBS) evaluation, in which building occupants experience a series of varied symptoms that appear to be linked to time spent in the building. Chemical pollutants concentrations (e.g., VOC) have been described to contribute to SBS. To exemplify the methodology, a qualitative determination and an evaluation of existing VOC were performed in a dwelling where the occupants experienced the SBS symptoms. Higher total VOC (TVOC) levels were detected during episodes in indoor air (1.33 ±1.53 mg/m^3) compared to outdoor air (0.71± 0.46 mg/m^3). The concentrations of individual VOCs, such as ethanol, acetone, isopropanol, 1-butanol, acetic acid, acetonitrile and 1-methoxy-2-propanol, were also higher than the expected for a standard dwelling. The external source of VOC was found to be an undeclared activity of storage and manipulation of solvents located at the bottom of a contiguous building.
基金Project(50838009) supported by the National Natural Science Foundation of ChinaProjects(2006BAJ02A09,2006BAJ02A13-4) supported by the National Key Technologies R & D Program of China
文摘To explore the relationship between summer office set air-conditioning temperature and energy consumption related to air conditioning use to provide human thermal comfort,a comparison experiment was conducted in three similar offices at temperatures of 24,26 and 28 ℃ respectively. A thermal comfort questionnaire survey was conducted. It is demonstrated that air-conditioner energy consumption at the set temperature of 28 ℃ is 113% and 271% lower than at 26 ℃ and 24 ℃,respectively. A linear relationship exists between air-conditioner energy consumption and the indoor and outdoor temperature difference. When comfortably dressed,over 80% of research participants accept the set temperature of 28 ℃. The regression analysis leads to a neutral temperature of 26.2 ℃ and an acceptable temperature of 28.2 ℃ for over 80% of the research participants subjects,indicating that the current 26 ℃ set temperature for offices in summer,required by Chinese General Office of the State Council,can be increased to 28 ℃. Moreover,analysis of predicted mean vote(PMV) index shows that a set temperature of 27 ℃,not 26 ℃,is sufficiently comfortable for office staff wearing long-sleeve shirts,long pants and leather shoes.
文摘Two building factors-a longer thermal lag of more than one hour for building envelops and a lag of indoor radiation to convert into cooling load-have impact on the instantaneous heat input and instantaneous cooling load.So the two factors should be taken into account when selecting the weather parameters for air-conditioning system design.This paper developed a new statistic method for the rational selection of coincident solar irradiance,dry-bulb and wet-bulb temperatures.The method was applied to historic weather records of 25 years in Hong Kong to generate coincident design weather data.And the results show that traditional design solar irradiance,dry-bulb and wet-bulb temperatures may be significantly overestimated in many conditions,and the design weather data for the three different constructions is not kept constant.
文摘Kriging is an interpolation technique that is used to estimate a variable at an unmeasured location from observed values at nearer locations. In this study, it is used to analyze the spatial distributions of the health risk of indoor air pollution. The study case is an air-conditioned office building that has 16 floors, located in Taipei, Taiwan. The Kriging method is used in drawing health risk maps on the basis of limited sample points and facilitates investigating the possible source of pollution.
文摘This paper deals with the application of decouple Control theory to temperature and humidi-ty control in air-conditioning system. The decouple control algorithm for bivariable systems isderived applicablly for air-conditioning system. The algorithm is used to design a temperatureand humidity computer control system for the preprocessing chamber of air-conditioning testequipment. The results of the real-time control experiments indicate that the decouple controlalgorithm is feasible, the control quality is improved and high control precision is achieved.
文摘Indoor air environment includes indoor thermal environment and air quality, and a reasonable ventilation provides guarantee for a good indoor environment. A numerical study of the indoor environment in different ventilation is presented in this paper. The External Energy Saving Lab of the WenYuan Building was selected for this purpose, and its indoor air quality and thermal performance in the typical summer climate were simulated. For the numerical simulation, the techniques of Fluent Air-pak was adopted to establish the physical and numerical model of lab. A attention is given to the velocity field and the distribution of pollutant concentration, followed by a discussion of two ventilation modes (displacement ventilation and up-in and up-out ventilation). By comparison, it is found that the Displacement ventilation in improving indoor air quality is obviously superior to the traditional up-in and up-out ventilation.
文摘Complaints on the indoor environment of the residents in recent decades have become a common problem in the Swedish housing. The buildings themselves are said to be the cause of problems, and it is given a vague picture of both the exposure and the effect of the problems. The symptoms that residents and users state are often common in the population such as headache, fatigue, mucosal disorders and skin problems. It must be considered that the air that people routinely inhale contains impurities of various kinds, both in- and outdoors. An important source of contamination indoors is the microorganisms that are pathogenic, so called agents. Examples of infectious agents are viruses, fungi, bacteria and protozoa. The purpose of this project is to examine whether a physical measurement is possible to obtain for identifying a possible threshold level of air pollution in the indoor environment. In this study, carried out through physical measurements, the results show major deficiencies in the Swedish school environment. If we study the emissions in the important health-related size range of particles larger than 5.0 microns, before and after measures, the environmental benefits are clarified since over 90% of contaminants larger than 5.0 microns have been eliminated.
文摘Based on analysis of the reason and process of condensation on ceiling radiant cooling panels, two kinds of arrangement of detectors are put forward. The physical model is established, the results show that detectors are arranged as the form of triangle is more suitable. It can not only satisfy the use requirement but also it is economical and practical. Finally we can conclude that the inlet water temperature 0.5°C higher than dew point temperature is safe and reliable.
文摘2022 Indoor Air Quality(IAQ),particularly in educational facilities,is gaining considerable interest and is a synonymous indicator towards evaluating human comfort.Factors such as CO_(2) concentration,temperature,and humidity play crucial parts in determining an acceptable level of IAQ.Many studies have also demonstrated that the indoor air quality of classrooms affects students’concentration and performance.Today with the threat of a global pandemic,the demand of clean&fresh indoor air quality in education buildings is extremely intensive.This study focuses on investigating IAQ situations and changes in different typical functional spaces of a higher education building in the UK.CO_(2),temperature,and humidity data in various learning environment were monitored via data loggers during the winter.Associated with data monitoring,a set of questionnaires surveys were carried out to evaluate the user’s experience.The results of this study show that temperature and CO_(2) concentration in the classrooms was constantly higher than the government guidance on a daily basis.The analysis also shows that temperature and humidity increased with CO_(2) levels,but at a much lower rate.This study has revealed poor and concerning IAQ in higher education buildings in the UK,particularly in larger rooms with high occupancy.Along with the findings,this paper also identifies possible impact or factors and proposes solutions to overcome these issues.
基金The National Natural Science Foundation of China(No.50478113)the Leading Academic Discipline Project of Shanghai Municipal Education Commission(No.J50502)
文摘The thermal environmental characteristics are experim-entally studied in terms of different air supply volumes and outdoor meteorological parameters in a large-space building which is air conditioned with a low sidewall air supply.The experimental results show that the indoor vertical temperature distributions under different condition are similar.The maximum vertical temperature difference(MVTD)is up to about 20 ℃,and it linearly changes with the sol-air temperature.The indoor vertical temperature gradients(VTGs)in the upper,central and lower zones are different.The influence of the sol-air temperature on the VTGs in the upper and the lower zones is greater than that in the central zone.The characteristics of the VTGs in the three zones affected by the air supply volume are the same as those affected by the sol-air temperature.Besides,because of the small air velocity,the predicted mean vote(PMV)on comfort in the occupied zone is slightly high and the air temperature difference between the head and the ankle is usually more than 3 ℃.
基金The first three authors who conducted this research were partly funded by the Industrial Assessment Center Project,supported by grants from the US Department of Energy and by the West Virginia Development Office.
文摘Building Energy Management Systems(BEMS)are computer-based systems that aid in managing,controlling,and monitoring the building technical services and energy consumption by equipment used in the building.The effectiveness of BEMS is dependent upon numerous factors,among which the operational characteristics of the building and the BEMS control parameters also play an essential role.This research develops a user-driven simulation tool where users can input the building parameters and BEMS controls to determine the effectiveness of their BEMS.The simulation tool gives the user the flexibility to understand the potential energy savings by employing specific BEMS control and help in making intelligent decisions.The simulation is developed using Visual Basic Application(VBA)in Microsoft Excel,based on discrete-event Monte Carlo Simulation(MCS).The simulation works by initially calculating the energy required for space cooling and heating based on current building parameters input by the user in the model.Further,during the second simulation,the user selects all the BEMS controls and improved building envelope to determine the energy required for space cooling and heating during that case.The model compares the energy consumption from the first simulation and the second simulation.Then the simulation model will provide the rating of the effectiveness of BEMS on a continuous scale of 1 to 5(1 being poor effectiveness and 5 being excellent effectiveness of BEMS).This work is intended to facilitate building owner/energy managers to analyze the building energy performance concerning the efficacy of their energy management system.
文摘Indoor Air Quality(IAQ)has been an area of growing concern with the increasing knowledge of health hazards associated with contaminants,particularly in high occupancy buildings where residents may be exposed to high levels of nuisance dust and other contaminants.Leadership and Energy in Environmental Design(LEED®)certification,which is awarded to buildings that prioritize sustainability and efficient resource use,has been increasingly sought in new construction.As LEED-certified buildings become more commonplace,it is worthwhile to consider whether these new building practices improve IAQ for its occupants.This study compares particulate matter(PM)concentrations in 12 LEED-certified buildings to 12 analogous non-LEED certified buildings on the University of Utah campus.Real-time air sampling was conducted in each building for PM measurements and a Wilcoxon signed rank test was conducted to compare PM levels.A statistically significant difference was found between LEED certification and PM concentrations,with LEED-certified buildings containing,on average,approximately half the PM of their non-LEED counterparts.These findings suggest that LEED certification is worth the financial investment,as it may lead to improved IAQ for residents.However,further research on other contaminants is warranted,including the characterization and comparison of formaldehyde and carbon dioxide levels.
文摘Different cities have different climate conditions and outdoor temperature and humidity, so the scheme of an environment control in subway should be analyzed by considering objective conditions, project cost and operating status. In this paper, a physical and mathematical model is built according to the design of Shenyang subway (line 1), the boundary conditions of the model are defined by the design and experiments, the numerical analysis of ventilating scheme and air conditioning scheme is introduced individually, and the temperature field and air flow field of the two schemes are compared, so that the feasibility of using a ventilating scheme in subway of northeast cities is discussed. Considering comfort and economy, it can be concluded that mechanical ventilation is feasible in subway of northeast cities because the air temperature there is not very high in summer.
文摘Products used during construction and operation of a building can contribute to Indoor Air Quality(IAQ)problems that affect occupants’well-being.However,IAQ is conventionally not addressed in the life cycle assessments(LCAs)of buildings and building related products even though IAQ leads to one of the areas of protection under LCA-human health impacts.In this study,we proposed an overall framework for integrating IAQ into LCA using the standard steps of LCA.The framework focused on IAQ and LCA modeling from two categories of building related products:i)passive products that realize their function through initial installation and have long-term decayed emissions,and ii)active equipment that realize their function and cause emissions through daily operation.Dynamic and static life cycle inventory modeling approaches were proposed for passive products and active equipment,respectively.An indoor intake fraction equation and USEtox model effect factors were incorporated into the life cycle impact assessment.Three hypothetical examples were presented to illustrate the calculation procedure of the framework.We concluded that it was feasible to integrate IAQ into building related LCA studies.Development of IAQ related impact assessment methodologies can improve upon the limitations of this study.Further studies need to be carried out to compare the health impacts from IAQ related sources to other life cycle stages of building related products.
文摘Poor indoor air quality is a large problem in Swedish schools, since the health of occupants may be affected. The building itself is often in focus and other building-related problems may be neglected. The hypothesis of this study is that factors other than the building itself have decisive influence on indoor environment. An assessment of these nonspecific building-related reasons for bad indoor environment has been made in the present work using surveys combined with particle measurements and comfort measurements (air humidity and air temperature). People are experiencing poor indoor air quality, the air is too dry and the temperature is uneven and uncomfortable indoors in the winter. It is important to highlight the problem of indoor environments with high particulate emissions especially in the range from 5.0 microns and larger since they are conveyers of allergens and bacteria, combined with dry air. An interesting observation regarding the ventilation system is that mechanical systems are tending to generate drier indoor air than the natural ventilation system. Results show that it is possible to decrease emissions through eliminating activity-related sources of airborne contaminants and better the comfort indoors with relatively simple measures.
基金Project(50878133) supported by the National Natural Science Foundation of ChinaProject(2007R37) supported by the Program of Excellent Talents in Liaoning Province,China+1 种基金Project(2008S193) supported by the Key Laboratory Fund of Education Department in Liaoning Province, ChinaProject(1071211-1-00) supported by the Scientific and Technical Fund of Shenyang,China
文摘By comparing the thermal performance parameters of an ordinary wall room with a phase change wall (PCW) room,the effect of phase change wallboard on the fluctuation of temperature in air-conditioning room in summer was studied. And PCW room and an ordinary wall room,which are cooled by air-conditioner,were built up. Differential scanning calorimetry (DSC) was used to test the temperature field and heat flow fluctuation in these rooms. Through analyzing the data tested,it is found that the mean temperature of PCW is lower than that of ordinary wall room by 1-2 ℃,and PCW can lower the heat flow by 4.6 W/m2. Combining phase change material to building envelope can lower the indoor temperature,make the room thermal comfortable,and cut down the turn-on-and-off frequency of air-conditioner,the primary investment and operating costs. It alleviates urgent need of the electric power. Building envelope which contains phase change wallboard can improve the indoor thermal environment,and decrease energy consumption in buildings. Phase change wallboard can make impressive effect on energy efficiency of buildings.