A site-specific model of UWB pulse propagation in indoor environment is addressed. The simulation utilizes the principles of geometrical optics (GO) for direct and reflected paths' tracing and the time domain techn...A site-specific model of UWB pulse propagation in indoor environment is addressed. The simulation utilizes the principles of geometrical optics (GO) for direct and reflected paths' tracing and the time domain technique for describing the transient electromagnetic field reflected from wall, floor, ceiling, and objects. The polarization of the received waveform is determined by taking into account the radiation pattern of the transmitting and receiving antennas, as well as the polarization changes owing to every reflection. The model provides more intrinsical interpretations for UWB pulse propagation in realistic indoor environment.展开更多
A modified random walk model for human motion is proposed to investigate characteristics of 60GHz indoor office propagation.Compared with the classic random walk model,the movement tendency in the walking process is t...A modified random walk model for human motion is proposed to investigate characteristics of 60GHz indoor office propagation.Compared with the classic random walk model,the movement tendency in the walking process is taken into account in the modified model.Based on the proposed model,path gains of the propagation environment are simulated under a variety of settings by using a ray tracing method.Simulation results and analysis show that human motion is a major source of disturbance to the indoor office propagation and results in performance degradation in some areas.展开更多
SV/IEEE 802.15.3a model has been the standard model for Ultra-wide bandwidth (UWB) indoor non-line-of-sight (NLOS) wireless propagation,but for line-of-sight (LOS) case,it is not well defined. In this paper,a new stat...SV/IEEE 802.15.3a model has been the standard model for Ultra-wide bandwidth (UWB) indoor non-line-of-sight (NLOS) wireless propagation,but for line-of-sight (LOS) case,it is not well defined. In this paper,a new statistical distribution model exclusively used for LOS environment is proposed based on investigation of the experimental data. By reducing the number of the visible random arriving clusters,the model itself and the parameters estimating of the corresponding model are simplified in comparison with SV/IEEE 802.15.3a model. The simulation result indicates that the proposed model is more accurate in modeling small-scale LOS environment than SV/IEEE 802.15.3a model when considering cumulative distribution functions (CDFs) for the three key channel impulse response (CIR) statistics.展开更多
A simplified closed-form analytic solution for UWB impulse signal transmitting through a finitely conducting slab is proposed. The approach first requires evaluating the impulse response of the slab and then convolvin...A simplified closed-form analytic solution for UWB impulse signal transmitting through a finitely conducting slab is proposed. The approach first requires evaluating the impulse response of the slab and then convolving it with the specified incident field waveform. To obtain the impulsive transmitting field, either for vertical or horizontal polarization, approximations to the refraction coefficients and propagation loss are made, which can be proved to be accurate enough, comparing with their frequency domain solutions. Thereby, it permits simplified closed-form expressions in the time domain for both terms. The resulting transient response for the transmitting impulse field is then given by convolution of the time domMn refraction coefficients and time domain propagation loss. A numerical example of an incident monocyele transmitting through a slab using this technique, is presented, to illustrate the effective use of the method.展开更多
基金the Key Program of National Natural Science Foundation of China (60432040)ChinaPostdoctors Science Foundation (20060390792).
文摘A site-specific model of UWB pulse propagation in indoor environment is addressed. The simulation utilizes the principles of geometrical optics (GO) for direct and reflected paths' tracing and the time domain technique for describing the transient electromagnetic field reflected from wall, floor, ceiling, and objects. The polarization of the received waveform is determined by taking into account the radiation pattern of the transmitting and receiving antennas, as well as the polarization changes owing to every reflection. The model provides more intrinsical interpretations for UWB pulse propagation in realistic indoor environment.
基金Supported by the National Natural Science Foundation of China(61172073)Program for New Century Excellent Talents of the Ministry of Education(NCET-12-0766)+1 种基金the Open Research Fund of National Mobile Communications Research Laboratory,Southeast University(2012D19)the Fundamental Research Funds for the Central Universities(2013JBZ001)
文摘A modified random walk model for human motion is proposed to investigate characteristics of 60GHz indoor office propagation.Compared with the classic random walk model,the movement tendency in the walking process is taken into account in the modified model.Based on the proposed model,path gains of the propagation environment are simulated under a variety of settings by using a ray tracing method.Simulation results and analysis show that human motion is a major source of disturbance to the indoor office propagation and results in performance degradation in some areas.
基金the Key Program of National Natural Science Foundation of China(Grant No.60432040).
文摘SV/IEEE 802.15.3a model has been the standard model for Ultra-wide bandwidth (UWB) indoor non-line-of-sight (NLOS) wireless propagation,but for line-of-sight (LOS) case,it is not well defined. In this paper,a new statistical distribution model exclusively used for LOS environment is proposed based on investigation of the experimental data. By reducing the number of the visible random arriving clusters,the model itself and the parameters estimating of the corresponding model are simplified in comparison with SV/IEEE 802.15.3a model. The simulation result indicates that the proposed model is more accurate in modeling small-scale LOS environment than SV/IEEE 802.15.3a model when considering cumulative distribution functions (CDFs) for the three key channel impulse response (CIR) statistics.
基金supported by the Key Program of the National Natural Science Foundation of China (60432040)the China Postdoctors Science Foundation (20060390792).
文摘A simplified closed-form analytic solution for UWB impulse signal transmitting through a finitely conducting slab is proposed. The approach first requires evaluating the impulse response of the slab and then convolving it with the specified incident field waveform. To obtain the impulsive transmitting field, either for vertical or horizontal polarization, approximations to the refraction coefficients and propagation loss are made, which can be proved to be accurate enough, comparing with their frequency domain solutions. Thereby, it permits simplified closed-form expressions in the time domain for both terms. The resulting transient response for the transmitting impulse field is then given by convolution of the time domMn refraction coefficients and time domain propagation loss. A numerical example of an incident monocyele transmitting through a slab using this technique, is presented, to illustrate the effective use of the method.