Aiming at the problem that the positioning accuracy of WiFi indoor positioning technology based on location fingerprint has not reached the requirements of practical application, a WiFi indoor positioning and tracking...Aiming at the problem that the positioning accuracy of WiFi indoor positioning technology based on location fingerprint has not reached the requirements of practical application, a WiFi indoor positioning and tracking algorithm combining adaptive affine propagation (AAPC), compressed sensing (CS) and Kalman filter is proposed. In the off-line phase, AAPC algorithm is used to generate clustering fingerprints with optimal clustering effect performance;In the online phase, CS and nearest neighbor algorithm are used for position estimation;Finally, the Kalman filter and physical constraints are combined to perform positioning and tracking. By collecting a large number of real experimental data, it is proved that the developed algorithm has higher positioning accuracy and more accurate trajectory tracking effect.展开更多
In recent years,a number of wireless indoor positioning(WIP),such as Bluetooth,Wi-Fi,and Ultra-Wideband(UWB)technologies,are emerging.However,the indoor environment is complex and changeable.Walls,pillars,and even ped...In recent years,a number of wireless indoor positioning(WIP),such as Bluetooth,Wi-Fi,and Ultra-Wideband(UWB)technologies,are emerging.However,the indoor environment is complex and changeable.Walls,pillars,and even pedestrians may block wireless signals and produce non-line-of-sight(NLOS)deviations,resulting in decreased positioning accuracy and the inability to provide people with real-time continuous indoor positioning.This work proposed a strong tracking particle filter based on the chi-square test(SPFC)for indoor positioning.SPFC can fuse indoor wireless signals and the information of the inertial sensing unit(IMU)in the smartphone and detect the NLOS deviation through the chi-square test to avoid the influence of the NLOS deviation on the final positioning result.Simulation experiment results show that the proposed SPFC can reduce the positioning error by 15.1%and 12.3% compared with existing fusion positioning systems in the LOS and NLOS environment.展开更多
With the development of urbanization,the problem of neurological diseases brought about by population aging has gradually become a social problem of worldwide concern.Aging leads to gradual degeneration of the central...With the development of urbanization,the problem of neurological diseases brought about by population aging has gradually become a social problem of worldwide concern.Aging leads to gradual degeneration of the central nervous system,shrinkage of brain tissue,and decline in physical function in many elderlies,making them susceptible to neurological diseases such as Alzheimer’s disease(AD),stroke,Parkinson’s and major depressive disorder(MDD).Due to the influence of these neurological diseases,the elderly have troubles such as memory loss,inability to move,falling,and getting lost,which seriously affect their quality of life.Tracking and positioning of elderly with neurological diseases and keeping track of their location in real-time are necessary and crucial in order to detect and treat dangerous and unexpected situations in time.Considering that the elderly with neurological diseases forget to wear a positioning device or have mobility problems due to carrying a positioning device,device-free positioning as a passive positioning technology that detects device-free individuals is more suitable than traditional active positioning for the home-based care of the elderly with neurological diseases.This paper provides an extensive and in-depth survey of device-free indoor positioning technology for home-based care and an in-depth analysis of the main features of current positioning systems,as well as the techniques,technologies andmethods they employ,fromthe perspective of the needs of the elderly with neurological conditions.Moreover,evaluation criteria and possible solutions of positioning techniques for the home-based care of the elderly with neurological conditions are proposed.Finally,the opportunities and challenges for the development of indoor positioning technology in 6G mobile networks for home-based care of the elderly with neurological diseases are discussed.This review has provided comprehensive and effective tracking and positioning techniques,technologies and methods for the elderly,by which we can obtain the location information of the elderly in real-time and make home-based care more comfortable and safer for the elderly with neurological diseases.展开更多
As an essential component of future comprehensive Positioning,Navigation,and Timing(PNT)system,indoor positioning technology has extensive application demands,making it a focal point of attention in both academia and ...As an essential component of future comprehensive Positioning,Navigation,and Timing(PNT)system,indoor positioning technology has extensive application demands,making it a focal point of attention in both academia and industry.This article comprehensively reviews the research status of indoor positioning technology in China,with a focus on highlighting representative achievements and application validations from major research institutions in recent years.It addresses the challenges and issues faced in promotion and application of large-scale,high-precision indoor positioning.Furthermore,a universal and seamless indoor-outdoor positioning system architecture is proposed,along with a technical roadmap and key technologies to achieve this architecture.Finally,an analysis and outlook on future technological trends are presented.展开更多
60 GHz millimeter wave(mmWave)system provides extremely high time resolution and multipath components(MPC)separation and has great potential to achieve high precision in the indoor positioning.However,the ranging data...60 GHz millimeter wave(mmWave)system provides extremely high time resolution and multipath components(MPC)separation and has great potential to achieve high precision in the indoor positioning.However,the ranging data is often contaminated by non-line-of-sight(NLOS)transmission.First,six features of 60GHz mm Wave signal under LOS and NLOS conditions are evaluated.Next,a classifier constructed by random forest(RF)algorithm is used to identify line-of-sight(LOS)or NLOS channel.The identification mechanism has excellent generalization performance and the classification accuracy is over 97%.Finally,based on the identification results,a residual weighted least squares positioning method is proposed.All ranging information including that under NLOS channels is fully utilized,positioning failure caused by insufficient LOS links can be avoided.Compared with the conventional least squares approach,the positioning error of the proposed algorithm is reduced by 49%.展开更多
The problem of high-precision indoor positioning in the 5G era has attracted more and more attention.A fingerprint location method based on matrix completion(MC-FPL)is proposed for 5G ultradense networks to overcome t...The problem of high-precision indoor positioning in the 5G era has attracted more and more attention.A fingerprint location method based on matrix completion(MC-FPL)is proposed for 5G ultradense networks to overcome the high costs of traditional fingerprint database construction and matching algorithms.First,a partial fingerprint database constructed and the accelerated proximal gradient algorithm is used to fill the partial fingerprint database to construct a full fingerprint database.Second,a fingerprint database division method based on the strongest received signal strength indicator is proposed,which divides the original fingerprint database into several sub-fingerprint databases.Finally,a classification weighted K-nearest neighbor fingerprint matching algorithm is proposed.The estimated coordinates of the point to be located can be obtained by fingerprint matching in a sub-fingerprint database.The simulation results show that the MC-FPL algorithm can reduce the complexity of database construction and fingerprint matching and has higher positioning accuracy compared with the traditional fingerprint algorithm.展开更多
This paper introduces the significance of indoor positioning and analyzes the related problems. The latest research on indoor positioning is introduced. Further, the positioning accuracy and the cost of typical local ...This paper introduces the significance of indoor positioning and analyzes the related problems. The latest research on indoor positioning is introduced. Further, the positioning accuracy and the cost of typical local and wide area indoor positioning systems are compared. The results of the comparison show that Time & Code Division-Orthogonal Frequency Division Multiplexing (TC-OFDM) is a system that can achieve real-time meter-accuracy of indoor positioning in a wide area. Finally, in this paper, we indicate that the seamless high-accuracy indoor positioning in a wide area is the development trend of indoor positioning. The seamless Location Based Services (LBS) architecture based on a heterogeneous network, key technologies in indoor positioning for decimeter-accuracy and seamless outdoor and indoor Geographic Information System (GIS) are elaborated as the most important research fields of future indoor positioning.展开更多
Visible light communications(VLC) have recently attracted a growing interest and can be a potential solution to realize indoor positioning,however,the performance of existing indoor positioning system is limited by mu...Visible light communications(VLC) have recently attracted a growing interest and can be a potential solution to realize indoor positioning,however,the performance of existing indoor positioning system is limited by multipath distortion inside a room.In order to combat the effect of multipath distortion,this paper proposes an LED-based indoor positioning algorithm combined with hybrid OFDM(HOFDM),in which asymmetrically clipped optical OFDM(ACOOFDM) is transmitted on the odd subcarriers while using pulse amplitude modulated discrete multitone(PAM-DMT) to modulate the imaginary part of each even subcarrier.In this scheme,we take a combined approach where a received-signal-strength(RSS) technique is employed to determine the location of the receiver and realize the 3-D positioning by Trust-region-based positioning.Moreover,a particle filter is used to further improve the positioning accuracy.Results confirm that this proposed positioning algorithm can achieve high accuracy even with multipath distortion,and the algorithm has better performance when combined with particle filter.展开更多
Indoor positioning systems have been sufficiently researched to provide location information of persons and devices.This paper is focused on the current research and further development of indoor positioning.The stand...Indoor positioning systems have been sufficiently researched to provide location information of persons and devices.This paper is focused on the current research and further development of indoor positioning.The standard evolution and industry development are summarized.There are various positioning systems according to the scenarios,cost and accuracy.However,there is a basic positioning system framework including information extraction,measurement and calculation.In particular,the detailed positioning technologies mainly including cellular positioning and Local Area Network(LAN) positioning are listed and compared to provide a reference for practical applications.Finally,we summarize the challenges of indoor positioning and give a3-phase evolution route.展开更多
The key techniques in indoor positioning based on visible light communication and the state of the art of this research were surveyed. First, the significance of indoor positioning based on visible light communication...The key techniques in indoor positioning based on visible light communication and the state of the art of this research were surveyed. First, the significance of indoor positioning based on visible light communication from two aspects of the limitations of current indoor positioning technology and the advantages of visible light communication was discussed; And then, the main four technology of indoor positioning based on visible light communication were summarized and the triangulation of RSS method and the principle of image positioning were introduced in detail; Next, the performance characteristics of various typical algorithms were compared and analyzed; In the end, several suggestions on future research of indoor positioning based on visible light communication were given.展开更多
Artificial intelligence(AI)models are promising to improve the accuracy of wireless positioning systems,particularly in indoor environments where unpredictable radio propagation channel is a great challenge.Although g...Artificial intelligence(AI)models are promising to improve the accuracy of wireless positioning systems,particularly in indoor environments where unpredictable radio propagation channel is a great challenge.Although great efforts have been made to explore the effectiveness of different AI models,it is still an open problem whether these models,trained with the data collected from all base stations(BSs),could work when some BSs are unavailable.In this paper,we make the first effort to enhance the generalization ability of AI wireless positioning model to adapt to the scenario where only partial BSs work.Particularly,a Siamese Network based Wireless Positioning Model(SNWPM)is proposed to predict the location of mobile user equipment from channel state information(CSI)collected from 5G BSs.Furthermore,a Feature Aware Attention Module(FAAM)is introduced to reinforce the capability of feature extraction from CSI data.Experiments are conducted on the 2022 Wireless Communication AI Competition(WAIC)dataset.The proposed SNWPM achieves decimeter-level positioning accuracy even if the data of partial BSs are unavailable.Compared with other AI models,the proposed SNWPM can reduce the positioning error by nearly 50%to more than 60%while using less parameters and lower computation resources.展开更多
Aiming at the shortcomings of the existing indoor location algorithm, such as low accuracy of positioning, high deployment and maintenance cost, and unstable robustness, this paper proposes a method of indoor location...Aiming at the shortcomings of the existing indoor location algorithm, such as low accuracy of positioning, high deployment and maintenance cost, and unstable robustness, this paper proposes a method of indoor location based on the integration of smartphone with WiFi and magnetic field using multi-sensor fusion. In the initial stages of positioning, rough location is achieved by Wi-Fi-RSSI fingerprints which provides an initial location and geomagnetic matching area for indoor positioning based on particle filter magnetic field matching. This paper proposes the use of median filter algorithm to deal with the original magnetic field data and covariance interpolation algorithm to generate magnetic field map, and effectively reduce the interference which caused by geomagnetic fluctuations, thereby it will improves the positioning accuracy. Finally, through conducting comprehensive experiments and tests, the results show that the proposed technique can reliably achieve 0.836 meters precision in current experimental environment.展开更多
We propose a method to improve positioning accuracy while reducing energy consumption in an indoor Wireless Local Area Network(WLAN) environment.First,we intelligently and jointly select the subset of Access Points(AP...We propose a method to improve positioning accuracy while reducing energy consumption in an indoor Wireless Local Area Network(WLAN) environment.First,we intelligently and jointly select the subset of Access Points(APs) used in positioning via Maximum Mutual Information(MMI) criterion.Second,we propose Orthogonal Locality Preserving Projection(OLPP) to reduce the redundancy among selected APs.OLPP effectively extracts the intrinsic location features in situations where previous linear signal projection techniques failed to do,while maintaining computational efficiency.Third,we show that the combination of AP selection and OLPP simultaneously exploits their complementary advantages while avoiding the drawbacks.Experimental results indicate that,compared with the widely used weighted K-nearest neighbor and maximum likelihood estimation method,the proposed method leads to 21.8%(0.49 m) positioning accuracy improvement,while decreasing the computation cost by 65.4%.展开更多
This paper proposes a novel indoor positioning scheme based on visible light communication(VLC).A new indoor VLC positioning scheme using fingerprint database with multi-parameters have been raised.We conduct simulati...This paper proposes a novel indoor positioning scheme based on visible light communication(VLC).A new indoor VLC positioning scheme using fingerprint database with multi-parameters have been raised.We conduct simulation and experimental research on the illumination intensity distribution of several direction parameters.In the experiment,four LED matrixes are identified by LED-ID with room dimensions of 3.75×4.00×2.7 m^3.The results show that the mean of the location error is 0.22 m in the receiving plane,verifying the correctness and feasibility of the positioning scheme.展开更多
Location-Based Services have become an indispensable part of our daily life, the sparsity of location finding makes it possible to estimate specific position by Compressive Sensing(CS). Using public Frequency Modulati...Location-Based Services have become an indispensable part of our daily life, the sparsity of location finding makes it possible to estimate specific position by Compressive Sensing(CS). Using public Frequency Modulation(FM) broadcasting and Digital Television Terrestrial Multimedia Broadcasting(DTMB) signals, this paper presents an indoor positioning scheme, which is consisted of an offline stage and an online stage. In the offline stage, the Received Signal Strength(RSS) at the Reference Points(RPs) is measured, including the average and variance of public FM broadcasting and DTMB signals. In the online stage, the K-Weighted Nearest Neighbor algorithm is used to fulfill coarse positioning, which is able to narrow the selection scope of locations and choose partial RPs for accurate positioning. Then, the accurate positioning is implemented through CS. Experiment shows that the average positioning error of the proposed scheme is 1.63 m. What’s more, a CS-based method has been proposed in this paper to reduce the labor cost when collecting data. Experiment shows the average positioning error is 2.04 m, with the advantage of a 34% labor cost reduction. Experiment results indicate that the proposed system is a practical indoor positioning scheme.展开更多
For situations such as indoor and underground parking lots in which satellite signals are obstructed,GNSS cooperative positioning can be used to achieve highprecision positioning with the assistance of cooperative nod...For situations such as indoor and underground parking lots in which satellite signals are obstructed,GNSS cooperative positioning can be used to achieve highprecision positioning with the assistance of cooperative nodes.Here we study the cooperative positioning of two static nodes,node 1 is placed on the roof of the building and the satellite observation is ideal,node 2 is placed on the indoor windowsill where the occlusion situation is more serious,we mainly study how to locate node 2 with the assistance of node 1.Firstly,the two cooperative nodes are located with pseudo-range single point positioning,and the positioning performance of cooperative node is analyzed,therefore the information of pseudo-range and position of node 1 is obtained.Secondly,the distance between cooperative nodes is obtained by using the baseline method with double-difference carrier phase.Finally,the cooperative location algorithms are studied.The Extended Kalman Filtering(EKF),Unscented Kalman Filtering(UKF)and Particle Filtering(PF)are used to fuse the pseudo-range,ranging information and location information respectively.Due to the mutual influences among the cooperative nodes in cooperative positioning,the EKF,UKF and PF algorithms are improved by resetting the error covariance matrix of the cooperative nodes at each update time.Experimental results show that after being improved,the influence between the cooperative nodes becomes smaller,and the positioning performance of the nodes is better than before.展开更多
Current positioning systems are primarily based on the Global Positioning System(GPS).Although the GPS is accurate within 10 m,it is mainly used for outdoor positioning services(Location-Based Service;LBS).However,sin...Current positioning systems are primarily based on the Global Positioning System(GPS).Although the GPS is accurate within 10 m,it is mainly used for outdoor positioning services(Location-Based Service;LBS).However,since satellite signals cannot penetrate buildings,indoor positioning has always been a blind spot for satellite signals.As indoor positioning applications are extensive with high commercial values,they have created a competitive niche in themarket.Existing indoor positioning technologies are unable to achieve less than 10 cmaccuracy except for the UltraWide Band(UWB)technology.On the other hand,the Bluetooth protocol achieves an accuracy of 1 to 2m.In this work,we use Bluetooth wireless signals to build a novel indoor positioning framework to avoid the high manufacturing costs involved in the UWB technology.The Bluetooth signals are combined with the results from artificial intelligence algorithms to improve accuracy.During laboratory indoor location tracking,the accuracy rate is 96%,which provides effective indoor tracking for the movement of people.展开更多
With the advent and advancements in the wireless technologies,Wi-Fi ngerprinting-based Indoor Positioning System(IPS)has become one of the most promising solutions for localization in indoor environments.Unlike the ou...With the advent and advancements in the wireless technologies,Wi-Fi ngerprinting-based Indoor Positioning System(IPS)has become one of the most promising solutions for localization in indoor environments.Unlike the outdoor environment,the lack of line-of-sight propagation in an indoor environment keeps the interest of the researchers to develop efcient and precise positioning systems that can later be incorporated in numerous applications involving Internet of Things(IoTs)and green computing.In this paper,we have proposed a technique that combines the capabilities of multiple algorithms to overcome the complexities experienced indoors.Initially,in the database development phase,Motley Kennan propagation model is used with Hough transformation to classify,detect,and assign different attenuation factors related to the types of walls.Furthermore,important parameters for system accuracy,such as,placement and geometry of Access Points(APs)in the coverage area are also considered.New algorithm for deployment of an additional AP to an already existing infrastructure is proposed by using Genetic Algorithm(GA)coupled with Enhanced Dilution of Precision(EDOP).Moreover,classication algorithm based on k-Nearest Neighbors(k-NN)is used to nd the position of a stationary or mobile user inside the given coverage area.For k-NN to provide low localization error and reduced space dimensionality,three APs are required to be selected optimally.In this paper,we have suggested an idea to select APs based on Position Vectors(PV)as an input to the localization algorithm.Deducing from our comprehensive investigations,it is revealed that the accuracy of indoor positioning system using the proposed technique unblemished the existing solutions with signicant improvements.展开更多
Although k-nearest neighbors (KNN) is a popular fingerprint match algorithm for its simplicity and accuracy, because it is sensitive to the circumstances, a fuzzy c-means (FCM) clustering algorithm is applied to i...Although k-nearest neighbors (KNN) is a popular fingerprint match algorithm for its simplicity and accuracy, because it is sensitive to the circumstances, a fuzzy c-means (FCM) clustering algorithm is applied to improve it. Thus, a KNN-based two-step FCM weighted (KTFW) algorithm for indoor positioning in wireless local area networks (WLAN) is presented in this paper. In KTFW algorithm, k reference points (RPs) chosen by KNN are clustered through FCM based on received signal strength (RSS) and location coordinates. The right clusters are chosen according to rules, so three sets of RPs are formed including the set of k RPs chosen by KNN and are given different weights. RPs supposed to have better contribution to positioning accuracy are given larger weights to improve the positioning accuracy. Simulation results indicate that KTFW generally outperforms KNN and its complexity is greatly reduced through providing initial clustering centers for FCM.展开更多
To tackle challenges such as interference and poor accuracy of indoor positioning systems,a novel scheme based on ultra-wide bandwidth(UWB)technology is proposed.First,we illustrate a distance measuring method between...To tackle challenges such as interference and poor accuracy of indoor positioning systems,a novel scheme based on ultra-wide bandwidth(UWB)technology is proposed.First,we illustrate a distance measuring method between two UWB devices.Then,a Taylor series expansion algorithm is developed to detect coordinates of the mobile node using the location of anchor nodes and the distance between them.Simulation results show that the observation error under our strategy is within 15 cm,which is superior to existing algorithms.The final experimental data in the hardware system mainly composed of STM32 and DW1000 also confirms the performance of the proposed scheme.展开更多
文摘Aiming at the problem that the positioning accuracy of WiFi indoor positioning technology based on location fingerprint has not reached the requirements of practical application, a WiFi indoor positioning and tracking algorithm combining adaptive affine propagation (AAPC), compressed sensing (CS) and Kalman filter is proposed. In the off-line phase, AAPC algorithm is used to generate clustering fingerprints with optimal clustering effect performance;In the online phase, CS and nearest neighbor algorithm are used for position estimation;Finally, the Kalman filter and physical constraints are combined to perform positioning and tracking. By collecting a large number of real experimental data, it is proved that the developed algorithm has higher positioning accuracy and more accurate trajectory tracking effect.
基金funded by the project“Design of System Integration Construction Scheme Based on Functions of Each Module” (No.XDHT2020169A)the project“Development of Indoor Inspection Robot System for Substation” (No.XDHT2019501A).
文摘In recent years,a number of wireless indoor positioning(WIP),such as Bluetooth,Wi-Fi,and Ultra-Wideband(UWB)technologies,are emerging.However,the indoor environment is complex and changeable.Walls,pillars,and even pedestrians may block wireless signals and produce non-line-of-sight(NLOS)deviations,resulting in decreased positioning accuracy and the inability to provide people with real-time continuous indoor positioning.This work proposed a strong tracking particle filter based on the chi-square test(SPFC)for indoor positioning.SPFC can fuse indoor wireless signals and the information of the inertial sensing unit(IMU)in the smartphone and detect the NLOS deviation through the chi-square test to avoid the influence of the NLOS deviation on the final positioning result.Simulation experiment results show that the proposed SPFC can reduce the positioning error by 15.1%and 12.3% compared with existing fusion positioning systems in the LOS and NLOS environment.
基金supported by the National Natural Science Foundation of China under Grant No.61701284the Innovative Research Foundation of Qingdao under Grant No.19-6-2-1-CG+5 种基金the Elite Plan Project of Shandong University of Science and Technology under Grant No.skr21-3-B-048the Sci.&Tech.Development Fund of Shandong Province of China under Grant Nos.ZR202102230289,ZR202102250695,and ZR2019LZH001the Humanities and Social Science Research Project of the Ministry of Education under Grant No.18YJAZH017the Taishan Scholar Program of Shandong Province,the Shandong Chongqing Science and Technology Cooperation Project under Grant No.cstc2020jscx-lyjsAX0008the Sci.&Tech.Development Fund of Qingdao under Grant No.21-1-5-zlyj-1-zc,SDUST Research Fund under Grant No.2015TDJH102the Science and Technology Support Plan of Youth Innovation Team of Shandong higher School under Grant No.2019KJN024.
文摘With the development of urbanization,the problem of neurological diseases brought about by population aging has gradually become a social problem of worldwide concern.Aging leads to gradual degeneration of the central nervous system,shrinkage of brain tissue,and decline in physical function in many elderlies,making them susceptible to neurological diseases such as Alzheimer’s disease(AD),stroke,Parkinson’s and major depressive disorder(MDD).Due to the influence of these neurological diseases,the elderly have troubles such as memory loss,inability to move,falling,and getting lost,which seriously affect their quality of life.Tracking and positioning of elderly with neurological diseases and keeping track of their location in real-time are necessary and crucial in order to detect and treat dangerous and unexpected situations in time.Considering that the elderly with neurological diseases forget to wear a positioning device or have mobility problems due to carrying a positioning device,device-free positioning as a passive positioning technology that detects device-free individuals is more suitable than traditional active positioning for the home-based care of the elderly with neurological diseases.This paper provides an extensive and in-depth survey of device-free indoor positioning technology for home-based care and an in-depth analysis of the main features of current positioning systems,as well as the techniques,technologies andmethods they employ,fromthe perspective of the needs of the elderly with neurological conditions.Moreover,evaluation criteria and possible solutions of positioning techniques for the home-based care of the elderly with neurological conditions are proposed.Finally,the opportunities and challenges for the development of indoor positioning technology in 6G mobile networks for home-based care of the elderly with neurological diseases are discussed.This review has provided comprehensive and effective tracking and positioning techniques,technologies and methods for the elderly,by which we can obtain the location information of the elderly in real-time and make home-based care more comfortable and safer for the elderly with neurological diseases.
基金National Key Research and Development Plan Project:High-precision Positioning Navigation and Control Technology for Large Underground Spaces(No.2021YFB3900800)。
文摘As an essential component of future comprehensive Positioning,Navigation,and Timing(PNT)system,indoor positioning technology has extensive application demands,making it a focal point of attention in both academia and industry.This article comprehensively reviews the research status of indoor positioning technology in China,with a focus on highlighting representative achievements and application validations from major research institutions in recent years.It addresses the challenges and issues faced in promotion and application of large-scale,high-precision indoor positioning.Furthermore,a universal and seamless indoor-outdoor positioning system architecture is proposed,along with a technical roadmap and key technologies to achieve this architecture.Finally,an analysis and outlook on future technological trends are presented.
基金supported by National Natural Science Foundation of China(No.62101298)Collaborative Education Project between Industry and Academia,China(22050609312501)。
文摘60 GHz millimeter wave(mmWave)system provides extremely high time resolution and multipath components(MPC)separation and has great potential to achieve high precision in the indoor positioning.However,the ranging data is often contaminated by non-line-of-sight(NLOS)transmission.First,six features of 60GHz mm Wave signal under LOS and NLOS conditions are evaluated.Next,a classifier constructed by random forest(RF)algorithm is used to identify line-of-sight(LOS)or NLOS channel.The identification mechanism has excellent generalization performance and the classification accuracy is over 97%.Finally,based on the identification results,a residual weighted least squares positioning method is proposed.All ranging information including that under NLOS channels is fully utilized,positioning failure caused by insufficient LOS links can be avoided.Compared with the conventional least squares approach,the positioning error of the proposed algorithm is reduced by 49%.
基金supported in part by Sub Project of National Key Research and Development plan in 2020.NO.2020YFC1511704Beijing Information Science and Technology University.NO.2020KYNH212,NO.2021CGZH302+1 种基金Beijing Science and Technology Project(Grant No.Z211100004421009)in part by the National Natural Science Foundation of China(Grant No.61971048)。
文摘The problem of high-precision indoor positioning in the 5G era has attracted more and more attention.A fingerprint location method based on matrix completion(MC-FPL)is proposed for 5G ultradense networks to overcome the high costs of traditional fingerprint database construction and matching algorithms.First,a partial fingerprint database constructed and the accelerated proximal gradient algorithm is used to fill the partial fingerprint database to construct a full fingerprint database.Second,a fingerprint database division method based on the strongest received signal strength indicator is proposed,which divides the original fingerprint database into several sub-fingerprint databases.Finally,a classification weighted K-nearest neighbor fingerprint matching algorithm is proposed.The estimated coordinates of the point to be located can be obtained by fingerprint matching in a sub-fingerprint database.The simulation results show that the MC-FPL algorithm can reduce the complexity of database construction and fingerprint matching and has higher positioning accuracy compared with the traditional fingerprint algorithm.
基金This work was supported by the National High Technology Research and Development Program (863 Program) of China under Grant No.2012AA120801the National High Technology Research and Development Program (863 Program) of China under Grant No.2012AA120802
文摘This paper introduces the significance of indoor positioning and analyzes the related problems. The latest research on indoor positioning is introduced. Further, the positioning accuracy and the cost of typical local and wide area indoor positioning systems are compared. The results of the comparison show that Time & Code Division-Orthogonal Frequency Division Multiplexing (TC-OFDM) is a system that can achieve real-time meter-accuracy of indoor positioning in a wide area. Finally, in this paper, we indicate that the seamless high-accuracy indoor positioning in a wide area is the development trend of indoor positioning. The seamless Location Based Services (LBS) architecture based on a heterogeneous network, key technologies in indoor positioning for decimeter-accuracy and seamless outdoor and indoor Geographic Information System (GIS) are elaborated as the most important research fields of future indoor positioning.
基金supported by the Doctoral Scientific Fund of the Ministry of Education of the People’s Republic of China(20120145120011)
文摘Visible light communications(VLC) have recently attracted a growing interest and can be a potential solution to realize indoor positioning,however,the performance of existing indoor positioning system is limited by multipath distortion inside a room.In order to combat the effect of multipath distortion,this paper proposes an LED-based indoor positioning algorithm combined with hybrid OFDM(HOFDM),in which asymmetrically clipped optical OFDM(ACOOFDM) is transmitted on the odd subcarriers while using pulse amplitude modulated discrete multitone(PAM-DMT) to modulate the imaginary part of each even subcarrier.In this scheme,we take a combined approach where a received-signal-strength(RSS) technique is employed to determine the location of the receiver and realize the 3-D positioning by Trust-region-based positioning.Moreover,a particle filter is used to further improve the positioning accuracy.Results confirm that this proposed positioning algorithm can achieve high accuracy even with multipath distortion,and the algorithm has better performance when combined with particle filter.
基金supported by the National Key Research and Development Plan under grant No. 2016YFB0502000
文摘Indoor positioning systems have been sufficiently researched to provide location information of persons and devices.This paper is focused on the current research and further development of indoor positioning.The standard evolution and industry development are summarized.There are various positioning systems according to the scenarios,cost and accuracy.However,there is a basic positioning system framework including information extraction,measurement and calculation.In particular,the detailed positioning technologies mainly including cellular positioning and Local Area Network(LAN) positioning are listed and compared to provide a reference for practical applications.Finally,we summarize the challenges of indoor positioning and give a3-phase evolution route.
基金supported by National Nature Science Foundation of China (No. 61373124)supported by China Scholarship Funds (2014CB3033)
文摘The key techniques in indoor positioning based on visible light communication and the state of the art of this research were surveyed. First, the significance of indoor positioning based on visible light communication from two aspects of the limitations of current indoor positioning technology and the advantages of visible light communication was discussed; And then, the main four technology of indoor positioning based on visible light communication were summarized and the triangulation of RSS method and the principle of image positioning were introduced in detail; Next, the performance characteristics of various typical algorithms were compared and analyzed; In the end, several suggestions on future research of indoor positioning based on visible light communication were given.
基金supported by National Natural Science Foundation of China (No. 62076251)sponsored by IMT-2020(5G) Promotion Group 5G+AI Work Group+3 种基金jointly sponsored by China Academy of Information and Communications TechnologyGuangdong OPPO Mobile Telecommunications Corp., Ltdvivo Mobile Communication Co., LtdHuawei Technologies Co., Ltd
文摘Artificial intelligence(AI)models are promising to improve the accuracy of wireless positioning systems,particularly in indoor environments where unpredictable radio propagation channel is a great challenge.Although great efforts have been made to explore the effectiveness of different AI models,it is still an open problem whether these models,trained with the data collected from all base stations(BSs),could work when some BSs are unavailable.In this paper,we make the first effort to enhance the generalization ability of AI wireless positioning model to adapt to the scenario where only partial BSs work.Particularly,a Siamese Network based Wireless Positioning Model(SNWPM)is proposed to predict the location of mobile user equipment from channel state information(CSI)collected from 5G BSs.Furthermore,a Feature Aware Attention Module(FAAM)is introduced to reinforce the capability of feature extraction from CSI data.Experiments are conducted on the 2022 Wireless Communication AI Competition(WAIC)dataset.The proposed SNWPM achieves decimeter-level positioning accuracy even if the data of partial BSs are unavailable.Compared with other AI models,the proposed SNWPM can reduce the positioning error by nearly 50%to more than 60%while using less parameters and lower computation resources.
文摘Aiming at the shortcomings of the existing indoor location algorithm, such as low accuracy of positioning, high deployment and maintenance cost, and unstable robustness, this paper proposes a method of indoor location based on the integration of smartphone with WiFi and magnetic field using multi-sensor fusion. In the initial stages of positioning, rough location is achieved by Wi-Fi-RSSI fingerprints which provides an initial location and geomagnetic matching area for indoor positioning based on particle filter magnetic field matching. This paper proposes the use of median filter algorithm to deal with the original magnetic field data and covariance interpolation algorithm to generate magnetic field map, and effectively reduce the interference which caused by geomagnetic fluctuations, thereby it will improves the positioning accuracy. Finally, through conducting comprehensive experiments and tests, the results show that the proposed technique can reliably achieve 0.836 meters precision in current experimental environment.
基金the High-Tech Research and Development Program of China,the National Seience Foundation for Young Scientists of China,the China Postdoctoral Science Foundation funded project
文摘We propose a method to improve positioning accuracy while reducing energy consumption in an indoor Wireless Local Area Network(WLAN) environment.First,we intelligently and jointly select the subset of Access Points(APs) used in positioning via Maximum Mutual Information(MMI) criterion.Second,we propose Orthogonal Locality Preserving Projection(OLPP) to reduce the redundancy among selected APs.OLPP effectively extracts the intrinsic location features in situations where previous linear signal projection techniques failed to do,while maintaining computational efficiency.Third,we show that the combination of AP selection and OLPP simultaneously exploits their complementary advantages while avoiding the drawbacks.Experimental results indicate that,compared with the widely used weighted K-nearest neighbor and maximum likelihood estimation method,the proposed method leads to 21.8%(0.49 m) positioning accuracy improvement,while decreasing the computation cost by 65.4%.
基金supported by ZTE Industry-Academia-Research Cooperation Funds under Grant No.2014ZTE02-12
文摘This paper proposes a novel indoor positioning scheme based on visible light communication(VLC).A new indoor VLC positioning scheme using fingerprint database with multi-parameters have been raised.We conduct simulation and experimental research on the illumination intensity distribution of several direction parameters.In the experiment,four LED matrixes are identified by LED-ID with room dimensions of 3.75×4.00×2.7 m^3.The results show that the mean of the location error is 0.22 m in the receiving plane,verifying the correctness and feasibility of the positioning scheme.
基金supported in part by the National Natural Science Foundation of China under grant No.61571244 and No.61871239in part by Tianjin Research Program of Application Foundation and Advanced Technology under grant No.16YFZCSF00540 and No.18YFZCGX00480
文摘Location-Based Services have become an indispensable part of our daily life, the sparsity of location finding makes it possible to estimate specific position by Compressive Sensing(CS). Using public Frequency Modulation(FM) broadcasting and Digital Television Terrestrial Multimedia Broadcasting(DTMB) signals, this paper presents an indoor positioning scheme, which is consisted of an offline stage and an online stage. In the offline stage, the Received Signal Strength(RSS) at the Reference Points(RPs) is measured, including the average and variance of public FM broadcasting and DTMB signals. In the online stage, the K-Weighted Nearest Neighbor algorithm is used to fulfill coarse positioning, which is able to narrow the selection scope of locations and choose partial RPs for accurate positioning. Then, the accurate positioning is implemented through CS. Experiment shows that the average positioning error of the proposed scheme is 1.63 m. What’s more, a CS-based method has been proposed in this paper to reduce the labor cost when collecting data. Experiment shows the average positioning error is 2.04 m, with the advantage of a 34% labor cost reduction. Experiment results indicate that the proposed system is a practical indoor positioning scheme.
基金This work was financially supported by National Major SpecialScience and Technology (No. GFZX0301040115)the National Natural Science Foundationof China (No. 61301094, No. 61571188)the Construct Program of the Key Discipline inHunan Province, China, the Aid program for Science and Technology Innovative ResearchTeam in Higher Educational Institute of Hunan Province, and the Planned Science andTechnology Project of Loudi City, Hunan Province, China.
文摘For situations such as indoor and underground parking lots in which satellite signals are obstructed,GNSS cooperative positioning can be used to achieve highprecision positioning with the assistance of cooperative nodes.Here we study the cooperative positioning of two static nodes,node 1 is placed on the roof of the building and the satellite observation is ideal,node 2 is placed on the indoor windowsill where the occlusion situation is more serious,we mainly study how to locate node 2 with the assistance of node 1.Firstly,the two cooperative nodes are located with pseudo-range single point positioning,and the positioning performance of cooperative node is analyzed,therefore the information of pseudo-range and position of node 1 is obtained.Secondly,the distance between cooperative nodes is obtained by using the baseline method with double-difference carrier phase.Finally,the cooperative location algorithms are studied.The Extended Kalman Filtering(EKF),Unscented Kalman Filtering(UKF)and Particle Filtering(PF)are used to fuse the pseudo-range,ranging information and location information respectively.Due to the mutual influences among the cooperative nodes in cooperative positioning,the EKF,UKF and PF algorithms are improved by resetting the error covariance matrix of the cooperative nodes at each update time.Experimental results show that after being improved,the influence between the cooperative nodes becomes smaller,and the positioning performance of the nodes is better than before.
文摘Current positioning systems are primarily based on the Global Positioning System(GPS).Although the GPS is accurate within 10 m,it is mainly used for outdoor positioning services(Location-Based Service;LBS).However,since satellite signals cannot penetrate buildings,indoor positioning has always been a blind spot for satellite signals.As indoor positioning applications are extensive with high commercial values,they have created a competitive niche in themarket.Existing indoor positioning technologies are unable to achieve less than 10 cmaccuracy except for the UltraWide Band(UWB)technology.On the other hand,the Bluetooth protocol achieves an accuracy of 1 to 2m.In this work,we use Bluetooth wireless signals to build a novel indoor positioning framework to avoid the high manufacturing costs involved in the UWB technology.The Bluetooth signals are combined with the results from artificial intelligence algorithms to improve accuracy.During laboratory indoor location tracking,the accuracy rate is 96%,which provides effective indoor tracking for the movement of people.
基金The authors extend their appreciation to National University of Sciences and Technology for funding this work through Researchers Supporting Grant,National University of Sciences and Technology,Islamabad,Pakistan.
文摘With the advent and advancements in the wireless technologies,Wi-Fi ngerprinting-based Indoor Positioning System(IPS)has become one of the most promising solutions for localization in indoor environments.Unlike the outdoor environment,the lack of line-of-sight propagation in an indoor environment keeps the interest of the researchers to develop efcient and precise positioning systems that can later be incorporated in numerous applications involving Internet of Things(IoTs)and green computing.In this paper,we have proposed a technique that combines the capabilities of multiple algorithms to overcome the complexities experienced indoors.Initially,in the database development phase,Motley Kennan propagation model is used with Hough transformation to classify,detect,and assign different attenuation factors related to the types of walls.Furthermore,important parameters for system accuracy,such as,placement and geometry of Access Points(APs)in the coverage area are also considered.New algorithm for deployment of an additional AP to an already existing infrastructure is proposed by using Genetic Algorithm(GA)coupled with Enhanced Dilution of Precision(EDOP).Moreover,classication algorithm based on k-Nearest Neighbors(k-NN)is used to nd the position of a stationary or mobile user inside the given coverage area.For k-NN to provide low localization error and reduced space dimensionality,three APs are required to be selected optimally.In this paper,we have suggested an idea to select APs based on Position Vectors(PV)as an input to the localization algorithm.Deducing from our comprehensive investigations,it is revealed that the accuracy of indoor positioning system using the proposed technique unblemished the existing solutions with signicant improvements.
文摘Although k-nearest neighbors (KNN) is a popular fingerprint match algorithm for its simplicity and accuracy, because it is sensitive to the circumstances, a fuzzy c-means (FCM) clustering algorithm is applied to improve it. Thus, a KNN-based two-step FCM weighted (KTFW) algorithm for indoor positioning in wireless local area networks (WLAN) is presented in this paper. In KTFW algorithm, k reference points (RPs) chosen by KNN are clustered through FCM based on received signal strength (RSS) and location coordinates. The right clusters are chosen according to rules, so three sets of RPs are formed including the set of k RPs chosen by KNN and are given different weights. RPs supposed to have better contribution to positioning accuracy are given larger weights to improve the positioning accuracy. Simulation results indicate that KTFW generally outperforms KNN and its complexity is greatly reduced through providing initial clustering centers for FCM.
基金National Key Research and Development Program of China,No.2018YFC0604404.
文摘To tackle challenges such as interference and poor accuracy of indoor positioning systems,a novel scheme based on ultra-wide bandwidth(UWB)technology is proposed.First,we illustrate a distance measuring method between two UWB devices.Then,a Taylor series expansion algorithm is developed to detect coordinates of the mobile node using the location of anchor nodes and the distance between them.Simulation results show that the observation error under our strategy is within 15 cm,which is superior to existing algorithms.The final experimental data in the hardware system mainly composed of STM32 and DW1000 also confirms the performance of the proposed scheme.