期刊文献+
共找到22篇文章
< 1 2 >
每页显示 20 50 100
Thermal and induced flow characteristics of radio frequency surface dielectric barrier discharge plasma actuation at atmospheric pressure 被引量:1
1
作者 王蔚龙 李军 +3 位作者 宋慧敏 金迪 贾敏 吴云 《Chinese Physics B》 SCIE EI CAS CSCD 2017年第1期320-325,共6页
Thermal and induced flow velocity characteristics of radio frequency(RF) surface dielectric barrier discharge(SDBD)plasma actuation are experimentally investigated in this paper. The spatial and temporal distribut... Thermal and induced flow velocity characteristics of radio frequency(RF) surface dielectric barrier discharge(SDBD)plasma actuation are experimentally investigated in this paper. The spatial and temporal distributions of the dielectric surface temperature are measured with the infrared thermography at atmospheric pressure. In the spanwise direction, the highest dielectric surface temperature is acquired at the center of the high voltage electrode, while it reduces gradually along the chordwise direction. The maximum temperature of the dielectric surface raises rapidly once discharge begins.After several seconds(typically 100 s), the temperature reaches equilibrium among the actuator's surface, plasma, and surrounding air. The maximum dielectric surface temperature is higher than that powered by an AC power supply in dozens of k Hz. Influences of the duty cycle and the input frequency on the thermal characteristics are analyzed. When the duty cycle increases, the maximum dielectric surface temperature increases linearly. However, the maximum dielectric surface temperature increases nonlinearly when the input frequency varies from 0.47 MHz to 1.61 MHz. The induced flow velocity of the RF SDBD actuator is 0.25 m/s. 展开更多
关键词 radio frequency discharge temperature distribution induced flow velocity plasma aerodynamic actuation
下载PDF
The Mathematical and Parameterized Expressions for Wave Induced Excess Flow of Momentum 被引量:1
2
作者 朱首贤 丁平兴 张文静 《China Ocean Engineering》 SCIE EI 2007年第1期137-146,共10页
Wave induced excess flow of momentum (WIEFM) is the averaged flow of momentum over a wave period due to wave presence, which may also be called 3-D radiation stress. In this paper, the 3-D current equations with WIE... Wave induced excess flow of momentum (WIEFM) is the averaged flow of momentum over a wave period due to wave presence, which may also be called 3-D radiation stress. In this paper, the 3-D current equations with WIEFM are derived from the averaged Navier-Stokes equations over a wave period, in which the velocity is separated into the largescale backgrotmd velocity, the wave particle velocity and the turbulent fluctuation velocity. A concept of wave fluctuating layer (WFL) is put forward, which is the vertical column from the wave trough to wave ridge. The mathematical expressions of WIEFM in WFL and below WFL are given separately. The parameterized expressions of WIEFM are set up according to the linear wave theory. The integration of WIEFM in the vertical direction equals the traditional radiation stress (namely 2-D radiation stress) given by Longuet-Higgins and Stewart. 展开更多
关键词 wave induced excess flow of momentum wave fluctuating layer radiation stress
下载PDF
Study on Free Surface and Channel Flow Induced by Low Temperature Plasma via Lattice Boltzmann Method 被引量:1
3
作者 弯港 金涌 +1 位作者 李海元 栗保明 《Plasma Science and Technology》 SCIE EI CAS CSCD 2016年第3期331-336,共6页
Active boundary layer flow control and boundary layer manipulation in the channel flow that was based on low temperature plasma were studied by means of a lattice Boltzmann method. Two plasma actuators were placed in ... Active boundary layer flow control and boundary layer manipulation in the channel flow that was based on low temperature plasma were studied by means of a lattice Boltzmann method. Two plasma actuators were placed in a row to obtain the influence rule of their separation distance on the velocity profile at three locations and maximum velocity in the flow field. Two plasma actuators were placed symmetrically inside a channel to examine the effect of channel height and voltage on the velocity profile and flow rate. It was found that the channel height controls the distribution of flow velocity, which affected the flow rate and its direction. Increasing plasma voltage had a negative effect on the flow rate due to the generation of a larger and stronger flow vortex. 展开更多
关键词 lattice Boltzmann method (LBM) low-temperature plasma induced flow
下载PDF
Flow-Induced Vibration of A Nonlinearly Restrained Curved Pipe Conveying Fluid
4
作者 王琳 倪樵 黄玉盈 《海洋工程:英文版》 EI 2004年第3期347-356,共10页
Investigated in this study is the flow induced vibration of a nonlinearly restrained curved pipe conveying fluid. The nonlinear equation of motion is derived by equilibrium of forces on microelement of the system und... Investigated in this study is the flow induced vibration of a nonlinearly restrained curved pipe conveying fluid. The nonlinear equation of motion is derived by equilibrium of forces on microelement of the system under consideration. The spatial coordinate of the system is discretized by DQM (differential quadrature method). On the basis of the boundary conditions, the dynamic equation is solved by the Newton Raphson iteration method. The numerical solutions reveal several complex dynamic motions for the variation of the fluid velocity parameter, such as limit cycle motion, buckling and so on. The result obtained also shows that the sub parameter regions corresponding to the several motions may change with the variation of some parameters of the curved pipe. The present study supplies a new reference for investigating the nonlinear dynamic response of some other structures. 展开更多
关键词 curved pipe conveying fluid flow induced vibration limit cycle motion motion constraint differential quadrature method
下载PDF
Vibration Response and Stress Analysis of Planar Elastic Tube Bundle Induced by Fluid Flow
5
作者 De-Rong Duan Pei-Qi Ge +1 位作者 Wen-Bo Bi Yan-Ying Dong 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2018年第2期89-96,共8页
Flow?induced vibration plays a positive role on heat transfer enhancement. Meanwhile, it is also a negative factor for fatigue strength. Satisfying the fatigue strength is the primary prerequisite for heat transfer en... Flow?induced vibration plays a positive role on heat transfer enhancement. Meanwhile, it is also a negative factor for fatigue strength. Satisfying the fatigue strength is the primary prerequisite for heat transfer enhancement. This paper numerically studied the flow?induced vibration of planar elastic tube bundle based on a two?way fluid–structure interaction(FSI) calculation. The numerical calculation involved the unsteady, three?dimensional incompressible governing equations solved with finite volume approach and the dynamic balance equation of planar elastic tube bundle solved with finite element method combined with dynamic mesh scheme. The numerical approach was verified by comparing with the published experimental results. Then the vibration trajectory, deformation and stress contour of planar elastic tube bundle were all studied. Results show that the combined movement of planar elastic tube bundle represents the agitation from inside to outside. The vibration of out?of?plane is the main vibration form with the typically sinusoidal behavior because the magnitude of displacement along the out?of?plane direction is the 100 times than the value of in?plane direction. The dangerous point locates in the innermost tube where the equivalent stress can be utilized to study the multiaxial fatigue of planar elastic tube bundle due to the alternating stress concentration. In the velocity range of 0.2-3 m/s, it is inferred that the vibration amplitude plays a role on the stress response and the stress amplitude is susceptible to the fluid velocity. This research paves a way for studying the fatigue strength of planar elastic tube bundle by flow?induced vibration. 展开更多
关键词 flow?induced vibration Planar elastic tube bundle Vibration response Stress analysis
下载PDF
Simulation of Vortex-Induced Vibrations of A Cylinder Using ANSYS CFX 被引量:5
6
作者 Abu Bakar IZHAR Arshad Hussain QURESHI Shahab KHUSHNOOD 《China Ocean Engineering》 SCIE EI CSCD 2014年第4期541-556,共16页
In this paper, vortex-induced vibrations of a cylinder are simulated by use of ANSYS CFX simulation code. The cylinder is treated as a rigid body and transverse displacements are obtained by use of a one degree of fre... In this paper, vortex-induced vibrations of a cylinder are simulated by use of ANSYS CFX simulation code. The cylinder is treated as a rigid body and transverse displacements are obtained by use of a one degree of freedom spring damper system. 2-D as well as 3-D analysis is performed using air as the fluid. Reynolds number is varied from 40 to 16000 approx., covering the laminar and turbulent regimes of flow. The experimental results of (Khalak and Williamson, 1997) and other researchers are used for validation purposes. The results obtained are comparable. 展开更多
关键词 vortex-induced vibrations ANSYS CFX flow induced vibrations fluid structure interaction
下载PDF
Induced noise of impeller stuck and passive rotation state in multi-stage pump without power drive under natural flow conditions
7
作者 Run-ze Zhou Hou-lin Liu +4 位作者 Ru-nan Hua Liang Dong Kim Tiow Ooi Cui Dai Si-yuan Hu 《Journal of Hydrodynamics》 SCIE EI CSCD 2023年第5期1008-1026,共19页
The natural flow cooling strategy is commonly employed in modern high-speed vessels and nuclear-powered submarines. These vessels rely on the energy generated by their own speed to drive the cooling system and supply ... The natural flow cooling strategy is commonly employed in modern high-speed vessels and nuclear-powered submarines. These vessels rely on the energy generated by their own speed to drive the cooling system and supply cooling water to the condenser. The circulating pump, which operates without a motor drive under natural flow conditions, is a large resistance component in the cooling system. However, it is also the primary noise source, significantly impacting the vessel’s safe operation and acoustic stealth performance. This study investigates the induced noise characteristics of a multi-stage pump under natural flow conditions by experiment, computational fluid dynamics (CFD), and acoustic finite element method. The analysis encompasses the distribution of the flow field, variations in acoustic power, spectral features of flow-induced noise, and directivity of external field radiation noise under different natural flow conditions. The results show that the acoustic power distribution is correlated with the flow field. When the impeller is stuck, the noise sources primarily concentrate in the flow separation area at the blade’s leading edge, the interface area between the impeller and the guide vane, and the flow shock area inside the guide vane. Conversely, when the impeller rotates passively, the blade wake area has a higher acoustic power. The flow noise spectrum under natural flow conditions mainly exhibits broadband and discrete characteristics. Additionally, the pump structure influences the external field radiation noise, and its directivity varies with different flow rates and characteristic frequencies. This study provides valuable insights into optimal design to reduce the noise of the circulating pump in the vessel’s natural flow cooling system. It is essential for ensuring the safe operation and acoustic stealth performance of high-speed vessels and nuclear-powered submarines. 展开更多
关键词 Natural flow condition multi-stage pump flow induced noise acoustic power radiation noise directivity
原文传递
Modeling and Analysis of A Rotary Direct Drive Servovalve 被引量:12
8
作者 YU Jue ZHUANG Jian YU Dehong 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2014年第5期1064-1074,共11页
Direct drive servovalves are mostly restricted to low flow rate and low bandwidth applications due to the considerable flow forces.Current studies mainly focus on enhancing the driving force,which in turn is limited t... Direct drive servovalves are mostly restricted to low flow rate and low bandwidth applications due to the considerable flow forces.Current studies mainly focus on enhancing the driving force,which in turn is limited to the development of the magnetic material.Aiming at reducing the flow forces,a novel rotary direct drive servovalve(RDDV)is introduced in this paper.This RDDV servovalve is designed in a rotating structure and its axially symmetric spool rotates within a certain angle range in the valve chamber.The servovalve orifices are formed by the matching between the square wave shaped land on the spool and the rectangular ports on the sleeve.In order to study the RDDV servovalve performance,flow rate model and mechanical model are established,wherein flow rates and flow induced torques at different spool rotation angles or spool radiuses are obtained.The model analysis shows that the driving torque can be alleviated due to the proposed valve structure.Computational fluid dynamics(CFD)analysis using ANSYS/FLUENT is applied to evaluate and validate the theoretical analysis.In addition,experiments on the flow rate and the mechanical characteristic of the RDDV servovalve are carried out.Both simulation and experimental results conform to the results of the theoretical model analysis,which proves that this novel and innovative structure for direct drive servovalves can reduce the flow force on the spool and improve valve frequency response characteristics.This research proposes a novel rotary direct drive servovalve,which can reduce the flow forces effectively. 展开更多
关键词 direct drive servovalve computational fluid dynamics(CFD) flow rate flow induced torque
下载PDF
Computation of vortical flow and flow induced noise by large eddy simulation with FW-H acoustic analogy and Powell vortex sound theory 被引量:7
9
作者 张楠 谢华 +1 位作者 王星 吴宝山 《Journal of Hydrodynamics》 SCIE EI CSCD 2016年第2期255-266,共12页
The sound generated by a NACA0012 airfoil in the wake of a rod is numerically simulated by two approaches, one is the large eddy simulation (LES) with the FW-H acoustic analogy and the other is the LES with the Powe... The sound generated by a NACA0012 airfoil in the wake of a rod is numerically simulated by two approaches, one is the large eddy simulation (LES) with the FW-H acoustic analogy and the other is the LES with the Powell vortex sound theory, in order to compare the accuracies of their predictions. The vortical structures around the rod-airfoil are computed by the LES and captured by the vortex identification (Q). The acoustic predictions are verified by the measurements. It is shown that the computed results by the two hybrid approa- ches (LES and FW-H, LES and Powell) are very similar. Both are shown to be satisfactory in the prediction of the noise generated by an unsteady flow. Subsequently, the numerical simulations of the wall pressure fluctuations and the flow-induced noise of a NACA0015 airfoil are made by the two hybrid approaches. At two angles of attack ( 0~ and 8~ ), the wall pressure fluctuations of the NACA0015 airfoil are computed. The obtained power spectra of the wall pressure fluctuations are analyzed and compared with the measured data. And the vortical structures around the airfoil at two angles of attack are simulated and analyzed. After that, the flow induced noises of the NACA0015 airfoil at two angles of attack are predicted by the two hybrid approaches (LES and FW-H, LES and Powell). The radiated sound spectra are analyzed and compared with the experimental data. Comparisons show that both are robust, credible and satisfactory in the numerical prediction of the flow induced noise. All numerical simulations are carried out by parallel processing in the Wuxi supercomputing center. 展开更多
关键词 flow induced noise large eddy simulation (LES) FW-H acoustic analogy powell vortex sound theory rod-airfoil airfoil
原文传递
Experimental study on plasma actuation characteristics of nanosecond pulsed dielectric barrier discharge 被引量:1
10
作者 郑浩 梁华 +4 位作者 陈杰 宗豪华 孟祥喆 谢理科 李应红 《Plasma Science and Technology》 SCIE EI CAS CSCD 2022年第1期129-138,共10页
Combining high-speed schlieren technology and infrared imaging technology,related research has been carried out on the influence of parameters such as actuation voltage,repetition frequency,and electrode size of an ac... Combining high-speed schlieren technology and infrared imaging technology,related research has been carried out on the influence of parameters such as actuation voltage,repetition frequency,and electrode size of an actuator on the discharge characteristics,induced flow field characteristics,and thermal characteristics of nanosecond pulsed dielectric barrier discharge.The results show that increasing the value of the actuation voltage can significantly increase the actuation intensity,and the plasma discharge area is significantly extended.Increasing the repetition frequency can increase the number of discharges per unit time.Both will cause more energy input and induce more changes in the flow field.The effect of temperature rise is more significant.The width of the covered electrode will affect the potential distribution during the discharge process,which in turn will affect the extension process of the plasma discharge filament.Under the same actuation intensity,the wider the covered electrode,the larger range the induced flow field and temperature rise is.Preliminary experimental analyses of high-frequency actuation characteristics,temperature field characteristics,flow field characteristics and actuation parameter settings provide support for the parameter selection and partial mechanism analysis of plasma anti-icing. 展开更多
关键词 NS-DBD actuation voltage repetition frequency induced flow field temperature rise
下载PDF
SIMULATIONS OF FLOW INDUCED CORROSION IN API DRILLPIPE CONNECTOR 被引量:1
11
作者 ZHU Hong-jun LIN Yuan-hua ZENG De-zhi YAN Ren-tian 《Journal of Hydrodynamics》 SCIE EI CSCD 2011年第6期784-791,共8页
Drillpipe failure is an outstanding issue in drilling engineering, often involving great financial losses. In view of the special features of the flow channel in the high failure zone, this article analyzes the drillp... Drillpipe failure is an outstanding issue in drilling engineering, often involving great financial losses. In view of the special features of the flow channel in the high failure zone, this article analyzes the drillpipe failure mechanism from the point of view of flow induced corrosion. Based on the Eulerian-Langrangian method and the discrete phase model, a numerical simulation method is used to investigate the flows of the drilling fluid in the drillpipe connector during the operation of three typical drilling methods (mud drilling, air drilling and foam drilling). From the flow field in the drillpipe connector, especially, the velocity and pressure distributions in the threaded nipple and the thickened intermediate belt, one may detect the existence of the flow induced corrosion. Then, some structural optimization measures for the drillpipe connector are proposed, and the optimization effects are compared. 展开更多
关键词 flow induced corrosion complex multiphase flow drillpipe connector threaded nipple eddy current
原文传递
EFFECTS OF TRANSVERSE OSCILLATIONS ON NATURAL CONVECTIVE FLOW INDUCED BY COMBINED THERMAL AND MASS DIFFUSIONS IN POROUS MEDIA 被引量:1
12
作者 WANG CHAOYANG TU CHUANJING, Department of Thermoscience and Engineering, Zhejiang University, Hangzhou, P. R. China 《Journal of Hydrodynamics》 SCIE EI CSCD 1989年第1期80-87,共8页
This paper studies the unsteady heat and mass natural convection in a highly porous medium bounded by an infinite vertical porous wall. The unsteady source of the problem arises from the transverse oscillations in suc... This paper studies the unsteady heat and mass natural convection in a highly porous medium bounded by an infinite vertical porous wall. The unsteady source of the problem arises from the transverse oscillations in suction velocity of fluids, The analytical results for the problem are obtained based on the method of small parameter, and show that the natural circulation in the porous medium is affected by this kind of oscillation. 展开更多
关键词 EFFECTS OF TRANSVERSE OSCILLATIONS ON NATURAL CONVECTIVE flow induceD BY COMBINED THERMAL AND MASS DIFFUSIONS IN POROUS MEDIA
原文传递
A Unified Momentum Equation Approach for Computing Flow-Induced Stresses in Structures with Arbitrarily-Shaped Stationary Boundaries
13
作者 Haram Yeo Hyungson Ki 《Communications in Computational Physics》 SCIE 2017年第6期39-63,共25页
This article presents a novel monolithic numerical method for computing flow-induced stresses for problems involving arbitrarily-shaped stationary boundaries.A unified momentum equation for a continuum consisting of b... This article presents a novel monolithic numerical method for computing flow-induced stresses for problems involving arbitrarily-shaped stationary boundaries.A unified momentum equation for a continuum consisting of both fluids and solids is derived in terms of velocity by hybridizing the momentum equations of incompressible fluids and linear elastic solids.Discontinuities at the interface are smeared over a finite thickness around the interface using the signed distance function,and the resulting momentum equation implicitly takes care of the interfacial conditions without using a body-fitted grid.A finite volume approach is employed to discretize the obtained governing equations on a Cartesian grid.For validation purposes,this method has been applied to three examples,lid-driven cavity flow in a square cavity,lid-driven cavity flow in a circular cavity,and flow over a cylinder,where velocity and stress fields are simultaneously obtained for both fluids and structures.The simulation results agree well with the results found in the literature and the results obtained by COMSOL Multiphysicsr. 展开更多
关键词 flow induced stress unified momentum equation monolithic approach smeared interface stationary boundary
原文传递
Numerical Simulation of Airfoil Vibrations Induced by Turbulent Flow
14
作者 Miloslav Feistauer Jaromır Horacek Petr Svacek 《Communications in Computational Physics》 SCIE 2015年第1期146-188,共43页
The subject of the paper is the numerical simulation of the interaction of two-dimensional incompressible viscous flow and a vibrating airfoil with large amplitudes.The airfoil with three degrees of freedom performs r... The subject of the paper is the numerical simulation of the interaction of two-dimensional incompressible viscous flow and a vibrating airfoil with large amplitudes.The airfoil with three degrees of freedom performs rotation around an elastic axis,oscillations in the vertical direction and rotation of a flap.The numerical simulation consists of the finite element solution of the Reynolds averaged Navier-Stokes equations combined with Spalart-Allmaras or k−ω turbulence models,coupled with a system of nonlinear ordinary differential equations describing the airfoil motion with consideration of large amplitudes.The time-dependent computational domain and approximation on a moving grid are treated by the Arbitrary Lagrangian-Eulerian formulation of the flow equations.Due to large values of the involved Reynolds numbers an application of a suitable stabilization of the finite element discretization is employed.The developed method is used for the computation of flow-induced oscillations of the airfoil near the flutter instability,when the displacements of the airfoil are large,up to±40 degrees in rotation.The paper contains the comparison of the numerical results obtained by both turbulence models. 展开更多
关键词 Fluid-structure interaction flow induced vibrations Reynolds averaged NavierStokes equations turbulence models finite element method coupling algorithm
原文传递
CHANGES IN THE ENDOCOCHLEAR POTENTIAL AND COCHLEAR BLOOD FLOW INDUCED BY ATP INFUSION AND ARTERIAL OCCLUSION
15
作者 胡博华 姜泗长 顾瑞 《Chinese Medical Journal》 SCIE CAS CSCD 1995年第6期30-35,共6页
To assess the relationship between cochlear blood flow (CBF) and auditory function, a procedure of intravital microscopy for observations of the lateral wall vessels of the cochlea coupled with the simultaneous measur... To assess the relationship between cochlear blood flow (CBF) and auditory function, a procedure of intravital microscopy for observations of the lateral wall vessels of the cochlea coupled with the simultaneous measurement of the endocochlear potential (EP) was established in guinea pigs with gradual ischemia of the cochlea. It was found that occlusions of both common carotid arteries and one of the vertebral arteries produced a minor reduction in CBF with no significant alteration in the EP. When intravenous infusion of ATP induced sharp and severe decreases in CBF, the EP varied only slightly from the baseline in some animals while there were no alteration in others. Furthermore, ATP infusions combined with arterial occlusions caused even more severe declines in CBF and a moderate decrease in the EP. The results indicate that not only does the CBF satisfy the basic needs of the processes of cochlear function, but also has a regulatory mechanism to ensure the normal function of the cochlea in the ischemia condition. It was also found that the changes in the stria vascularis vessels induced by decreases in blood pressure (BP) and heart rates were more severe than those of the spiral ligament vessels. This phenomenon indicated that the stria vascularis vessels were more sensitive to decreases of BP and heart rates. 展开更多
关键词 ATP IA In BP SC CHANGES IN THE ENDOCOCHLEAR POTENTIAL AND COCHLEAR BLOOD flow induceD BY ATP INFUSION AND ARTERIAL OCCLUSION DH
原文传递
Aeolian Tone from a Semi-Circular Cylinder in a Stream
16
作者 Takayuki Yamagata Nozomi Saito Nobuyuki Fujisawa 《Journal of Flow Control, Measurement & Visualization》 2016年第1期30-37,共8页
Aeolian tone from a semi-circular cylinder in a uniform flow is studied experimentally for various angles of attack. It is found that the peak sound spectrum of the Aeolian tone from the semi-circular cylinder is smal... Aeolian tone from a semi-circular cylinder in a uniform flow is studied experimentally for various angles of attack. It is found that the peak sound spectrum of the Aeolian tone from the semi-circular cylinder is smaller than that from the circular cylinder and the lowest sound is observed around the zero angle of attack. This is due to the reduction in the fluctuating lift force on the semi-circular cylinder compared to that of the circular cylinder. This result suggests the validity of the analogy between the sound pressure level and the fluctuating lift force on a semi-circular cylinder in a stream. The flow visualization study also supports these results. 展开更多
关键词 Aeolian Tone Semi-Circular Cylinder Fluctuating Lift Force Angle of Attack flow induced Sound
下载PDF
Evaporation-driven water flow induced electricity from porous carbon film
17
作者 Zhou Jun(周军) Guo Wanlin (郭万林) +1 位作者 Deng Shaozhi (邓少芝) Chen Jian (陈建) 《Science Foundation in China》 CAS 2017年第2期35-35,共1页
Subject code:E02 With the support by the National Natural Science Foundation of China,a collaborative study by the research group led by Prof.Zhou Jun(周军)from Wuhan National Laboratory for Optoelectronics,Huazhong U... Subject code:E02 With the support by the National Natural Science Foundation of China,a collaborative study by the research group led by Prof.Zhou Jun(周军)from Wuhan National Laboratory for Optoelectronics,Huazhong University of Science and Technology,Prof.Guo Wanlin(郭万林)from Nanjing University 展开更多
关键词 flow Evaporation-driven water flow induced electricity from porous carbon film
原文传递
NUMERICAL SIMULATION OF FLOW OVER TWO SIDE-BY-SIDE CIRCULAR CYLINDERS 被引量:8
18
作者 SARVGHAD-MOGHADDAM Hesam NOOREDIN Navid GHADIRI-DEHKORDI Behzad 《Journal of Hydrodynamics》 SCIE EI CSCD 2011年第6期792-805,共14页
In the present paper, the unsteady, viscous, incompressible and 2-D flow around two side-by-side circular cylinders was simulated using a Cartesian-staggered grid finite volume based method. A great-source term techni... In the present paper, the unsteady, viscous, incompressible and 2-D flow around two side-by-side circular cylinders was simulated using a Cartesian-staggered grid finite volume based method. A great-source term technique was employed to identify the solid bodies (cylinders) located in the flow field and boundary conditions were enforced by applying the ghost-cell technique. Finally, the characteristics of the flow around two side-by-side cylinders were comprehensively obtained through several computational simulations. The computational simulations were performed for different transverse gap ratios (1.5≤T/D≤4) in laminar (Re=100,200) and turbulent (Re=104) regimes, where T and D are the distance between the centers of cylinders and the diameter of cylinders, respectively. The Reynolds number is based on the diameter of cylinders,D. The pressure field and vorticity distributions along with the associated streamlines and the time histories of hydrodynamic forces were also calculated and analyzed for different gap ratios. Generally, different flow patterns were observed as the gap ratio and Reynolds number varied. Accordingly, the hydrodynamic forces showed irregular variations for small gaps while they took a regular pattern at higher spacing ratios. 展开更多
关键词 side-by-side cylinders vortex shedding flow induced forces finite volume method turbulent flow
原文传递
Comparison of aerodynamic characteristics between a novel highly loaded injected blade with curvature induced pressure-recovery concept and one with conventional design 被引量:6
19
作者 Zhiyuan CAO Chao ZHOU Zhili SUN 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2017年第3期939-950,共12页
This paper introduces a novel design method of highly loaded compressor blades with air injection.CFD methods were firstly validated with existing data and then used to develop and investigate the new method based on ... This paper introduces a novel design method of highly loaded compressor blades with air injection.CFD methods were firstly validated with existing data and then used to develop and investigate the new method based on a compressor cascade.A compressor blade is designed with a curvature induced pressure-recovery concept.A rapid drop of the local curvature on the blade suction surface results in a sudden increase in the local pressure,which is referred to as a curvature induced ‘Shock'.An injection slot downstream from the ‘Shock' is used to prevent ‘Shock' induced separation,thus reducing the loss.As a result,the compressor blade achieves high loading with acceptable loss.First,the design concept based on a 2D compressor blade profile is introduced.Then,a 3D cascade model is investigated with uniform air injection along the span.The effects of the incidence are also investigated on emphasis in the current study.The mid-span flow field of the 3D injected cascade shows excellent agreement with the 2D designed flow field.For the highly loaded cascade without injection,the flow separates immediately downstream from the ‘Shock';the initial location of separation shows little change in a large incidence range.Thus air injection with the same injection configuration effectively removes the flow separation downstream from the curvature induced ‘Shock' and reduces the size of the separation zone at different incidences.Near the endwall,the flow within the incoming passage vortex mixes with the injected flow.As a result,the size of the passage vortex reduces significantly downstream from the injection slot.After air injection,the loss coefficient along spanwise reduces significantly and the flow turning angle increases. 展开更多
关键词 Axial compressor Air injection Curvature induced ‘Shock’ flow control Separation
原文传递
Failure Analysis and Design Changes of Oxygen Pump Inducers
20
作者 梁恒力 陈佐一 《Tsinghua Science and Technology》 SCIE EI CAS 2001年第5期492-496,共5页
The failure of an oxygen pump inducer during a test run was found to be the result of flow induced vibration. Oscillating fluid mechanics theory was used to determine the oscillating flow field around the inducer fo... The failure of an oxygen pump inducer during a test run was found to be the result of flow induced vibration. Oscillating fluid mechanics theory was used to determine the oscillating flow field around the inducer for various external oscillating perturbation frequencies. Enormous pressures can occur at some frequencies, which are sufficient to break the inducer. Some design changes were analyzed to improve the flow induced vibration characteristics. 展开更多
关键词 induceR flow induced vibration paremetric polynomial method (PPM) numerical calculation
原文传递
上一页 1 2 下一页 到第
使用帮助 返回顶部