In this paper we address the dynamics of compensation cutting process from both Laplace s frequency domain and the time domain of the first time, using the two computer aided analyzing softwares: MATLAB and SIMULI...In this paper we address the dynamics of compensation cutting process from both Laplace s frequency domain and the time domain of the first time, using the two computer aided analyzing softwares: MATLAB and SIMULINK. Theoretical analysis and simulation experiments firstly show that not only the systematical stiffness of workpiece, spindle and tools, but also the regenerated coefficient affects the compensation displacement effect. The results show that the SREC is practicable in reality to decease the spindle induced errors in many engineering applications such as hard boring through simulation and the preliminary experiment results.展开更多
In the machining of complicated surfaces,the cutters with large length/diameter ratios are used widely and the deformation of the machining system is one of the principal error sources.During the process planning stag...In the machining of complicated surfaces,the cutters with large length/diameter ratios are used widely and the deformation of the machining system is one of the principal error sources.During the process planning stage,the cutting direction angle,the cutter lead and tilt angles are usually optimized to minimize the force induced error.It may lead to a low machining efficiency for bullnose end mills,as the material removal rates are different largely for different machining angles.In this paper,the influence mechanism of the machining angles on the force induced error is studied based on the models of the instantaneous cutting force when the cutter flute traveling through the cutting contact point and the stiffness of the machining system.In order to evaluate the machining angles,the force induced error/efficiency indicator(FEI)is defined as the division of the force induced error and the equal volume sphere of the removed material.FEI is dimensionless,with the lower FEI,the lower force induced error and the higher machining efficiency.For optimal selection of the machining angles,the critical FEI is calculated with the constraint of force induced error and the desired material removal rate,and the critical FEI separate the set of the machining angles into two subsets.After the feed rate scheduling process,the machining angles in the optimal subset would have higher machining accuracy and efficiency,while the machining angles in the other subset have lower machining accuracy and efficiency.Through the machining experiment of five axis machining and freeform surface machining,the effectiveness and superiority of the proposed FEI method is verified with a bullnose end mill,which can improve the machining efficiency with the constraint of force induced error.展开更多
According to the SRAM-based FPGA's single event effect problem in space application,single event upset induced multi-block error(SEU-MBE) phenomenon and its mitigation strategy are studied in the paper.After analy...According to the SRAM-based FPGA's single event effect problem in space application,single event upset induced multi-block error(SEU-MBE) phenomenon and its mitigation strategy are studied in the paper.After analyzing the place and route result,the paper points out that the essence of SEU-MBE is that some important modules exceed the safe internal distance.Two approaches,area constraint method(ACM) and incremental route algorithm(IRA),are proposed,which can reduce the error rate by manipulating programmable switch matrix and interconnection points within FPGA route resource.Fault injection experiments indicate that error detection rate is above 98.6% for both strategies,and FPGA resources increment and performance penalty are around 10%.展开更多
文摘In this paper we address the dynamics of compensation cutting process from both Laplace s frequency domain and the time domain of the first time, using the two computer aided analyzing softwares: MATLAB and SIMULINK. Theoretical analysis and simulation experiments firstly show that not only the systematical stiffness of workpiece, spindle and tools, but also the regenerated coefficient affects the compensation displacement effect. The results show that the SREC is practicable in reality to decease the spindle induced errors in many engineering applications such as hard boring through simulation and the preliminary experiment results.
基金supported by National Science Fund for Distinguished Young Scholars of China(No.51625502)Innovative Group Project of National Natural Science Foundation of China(No.51721092)Innovative Group Project of Hubei Province of China(No.2017CFA003)。
文摘In the machining of complicated surfaces,the cutters with large length/diameter ratios are used widely and the deformation of the machining system is one of the principal error sources.During the process planning stage,the cutting direction angle,the cutter lead and tilt angles are usually optimized to minimize the force induced error.It may lead to a low machining efficiency for bullnose end mills,as the material removal rates are different largely for different machining angles.In this paper,the influence mechanism of the machining angles on the force induced error is studied based on the models of the instantaneous cutting force when the cutter flute traveling through the cutting contact point and the stiffness of the machining system.In order to evaluate the machining angles,the force induced error/efficiency indicator(FEI)is defined as the division of the force induced error and the equal volume sphere of the removed material.FEI is dimensionless,with the lower FEI,the lower force induced error and the higher machining efficiency.For optimal selection of the machining angles,the critical FEI is calculated with the constraint of force induced error and the desired material removal rate,and the critical FEI separate the set of the machining angles into two subsets.After the feed rate scheduling process,the machining angles in the optimal subset would have higher machining accuracy and efficiency,while the machining angles in the other subset have lower machining accuracy and efficiency.Through the machining experiment of five axis machining and freeform surface machining,the effectiveness and superiority of the proposed FEI method is verified with a bullnose end mill,which can improve the machining efficiency with the constraint of force induced error.
基金supported by the National High Technology Research and Development Program of China ("863" Program) (Grant No. 2006SQ710375)the Civil Aerospace Technologies Advanced Research Pro-gram of China (Grant No. C1320061301)Ministries and Commissions’Advanced Research Found of China (Grant No. 9140A20070209KG0160)
文摘According to the SRAM-based FPGA's single event effect problem in space application,single event upset induced multi-block error(SEU-MBE) phenomenon and its mitigation strategy are studied in the paper.After analyzing the place and route result,the paper points out that the essence of SEU-MBE is that some important modules exceed the safe internal distance.Two approaches,area constraint method(ACM) and incremental route algorithm(IRA),are proposed,which can reduce the error rate by manipulating programmable switch matrix and interconnection points within FPGA route resource.Fault injection experiments indicate that error detection rate is above 98.6% for both strategies,and FPGA resources increment and performance penalty are around 10%.