期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
Creep Induced Phase Transformation in Extruded Zn-Al Alloy 被引量:1
1
作者 Y.H.ZHU and J.Juarez Islas(Instituto de Investigaciones en Materiales, Universidad Nacional Autonoma de Mexico, Apartado P.70-360,Mexico D.F.04510, Mexico)E. Orozco(Instituto de Fisica, Universidad Autonoma de Mexico, Apartado P.20-364, Mexico D.F.04510, 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 1997年第6期503-507,共5页
Phase transformation and microstructural change of an extruded eutectoid Zn-Al alloy Zn76Al22Cu2 (wt pct) were investigated during creep testing by using SEM and X-ray diffraction techniques. Creep induced decompositi... Phase transformation and microstructural change of an extruded eutectoid Zn-Al alloy Zn76Al22Cu2 (wt pct) were investigated during creep testing by using SEM and X-ray diffraction techniques. Creep induced decomposition of a metastable η'T phase and a four phase transformation, α+ ε →T' +η, occurred during the creep testing. Also a microstructural change was observed from a lamellar structure into a spheroidized structure in the rupture part of the extruded alloy. It provided evidence of creep induced phase transformations which occurred in ageing process. The mechanism of creep rupture of the extruded Zn-Al alloy was also discussed. 展开更多
关键词 AL ZN Creep induced phase transformation in Extruded Zn-Al Alloy
下载PDF
Tensile Stress Induced Phase Transformations in Zn-Al Alloy
2
作者 Y.H.ZHU and J.Juarez Islas (Instituto de Investigaciones en Materiales, UNAM, Apdo.P.70-360, Mexico D.F.04510, Mexico) 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 1997年第1期45-49,共5页
Both furnace cooled and as-cast eutectoid Zn-Al alloys were investigated under external tensile stress at 100℃. It was observed that the external tensile stress caused decomposition of two metastable phases η'T ... Both furnace cooled and as-cast eutectoid Zn-Al alloys were investigated under external tensile stress at 100℃. It was observed that the external tensile stress caused decomposition of two metastable phases η'T and η'S which derived from both original state of the alloy, and a phase transformation, αf +ε→T' +η, in both furnace cooled and as-cast eutectoid Zn-Al alloys. Also spheroidized structure formed partially during tensile testing. Superplasticity of the alloy has been discussed correlating with the phase transformations and microstructural changes. 展开更多
关键词 ZN AL Tensile Stress induced phase transformations in Zn-Al Alloy
下载PDF
Formation of quaternary all-d-metal Heusler alloy by Co doping fcc type Ni_(2)MnV and mechanical grinding induced B2–fcc transformation 被引量:1
3
作者 彭璐 张强强 +5 位作者 王娜 夏中昊 张亚九 吴志刚 刘恩克 柳祝红 《Chinese Physics B》 SCIE EI CAS CSCD 2023年第1期427-433,共7页
The structure of the all-d-metal alloy Ni_(50-x)Co_(x)Mn_(25)V_(25)(x=0–50)is investigated by using theoretical and experimental methods.The first-principles calculations indicate that the most stable structure of th... The structure of the all-d-metal alloy Ni_(50-x)Co_(x)Mn_(25)V_(25)(x=0–50)is investigated by using theoretical and experimental methods.The first-principles calculations indicate that the most stable structure of the Ni_2MnV alloy is face-centered cubic (fcc)type structure with ferrimagnetic state and the equilibrium lattice constant is 3.60A,which is in agreement with the experimental result.It is remarkable that replacing partial Ni with Co can turn the alloy from the fcc structure to the B2-type Heusler structure as Co content x>37 by using the melting spinning method,implying that the d–d hybridization between Co/Mn elements and low-valent elements V stabilizes the Heusler structure.The Curie temperature T_(C) of all-dmetal Heuser alloy Ni_(50-x)Co_(x)Mn_(25)V_(25)(x>37)increases almost linearly with the increase of Co due to that the interaction of Co–Mn is stronger than that of Ni–Mn.A magnetic transition from ferromagnetic state to weak magnetic state accompanying with grinding stress induced transformation from B2 to the dual-phase of B2 and fcc has been observed in these all-d-metal Heusler alloys.This phase transformation and magnetic change provide a guide to overcome the brittleness and make the all-d-metal Heusler alloy interesting in stress and magnetic driving structural transition. 展开更多
关键词 all-d-metal Heusler alloy grinding induced phase transformation phase stability
下载PDF
Applied Strain Field on Microstructure Optimization of Ti-Al-Nb Alloy Computer Simulated by Phase Field Approach 被引量:3
4
作者 Wei GUO Yaping ZONG +1 位作者 Gang WANG Liang ZUO Department of Materials Science and Engineeing,Northeastern University,Shenyang 110004, China 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2004年第3期245-248,共4页
The effects of applied tensile strain on the coherent α_2→O-phase transformation in Ti-Al-Nb alloys are explored bycomputer simulation using a phase-field method. The focus is on the influence of the applied strain ... The effects of applied tensile strain on the coherent α_2→O-phase transformation in Ti-Al-Nb alloys are explored bycomputer simulation using a phase-field method. The focus is on the influence of the applied strain direction onthe microstructure and volume fraction of the O-phase precipitates. It is found that altering applied strain directioncan modify microstructure of Ti-25Al-10~12Nb (at. pct) alloy during α_2→O-phase transformation effectively andfull laminate microstructure in the Ti-25Al-10Nb (at. pct) alloy can be realized by an applied strain only along thedirection 30°away from the α_2 phase <1010> in magnitude equivalent to the stress-free transformation strain. Thesimulation also shows that not only the magnitude of applied strain but also the applied strain direction influencesthe O-phase volume fraction and the effect of strain direction on the volume fraction is up to 25%. 展开更多
关键词 phase field simulation Strain induced phase transformation Ti-Al-Nb alloy Computerization materials Microstructure evoutionv Precipitates geometry Microstructure design
下载PDF
TRANSFORMATION OF RETAINED AUSTENITE IN CARBURIZED CASE DURING FATIGUE CRACK GROWTH
5
作者 JING Xiaotian LOU Bingzhe GU Chenqing SHEN Fusan Shanxi Institute of Mechanical Engineering,Xi’an,China Dept.of Materials,Shanxi Institute of Mechanical Engineering,Xi’an 710048,China 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 1990年第4期268-275,共8页
The morphology of the retained austenite in the carburized case of 20CrNiMo steel and its transformation during fatigue crack propagation through the case were investigated by using X-ray and TEM analysis.In the carbu... The morphology of the retained austenite in the carburized case of 20CrNiMo steel and its transformation during fatigue crack propagation through the case were investigated by using X-ray and TEM analysis.In the carburized case both film and block shaped retained austenite were found.Due to the crystallographic orientation relationship at the interface,the fatigue crack is inclined to pass through the block shaped retained austenite and thereby stim- ulates its strain-induced martensitie transformation.During the process of the fatigue frac- ture,most of the retained austenite structures on the crack path are transformed into the martensite,and the untranaformed parts on the fracture surface remain less than 6%.The transformation of the retained austenite,which is restrieted mainly within the plastic zone,oc- curs only during the proeess of fracture,and is independent of the magnitudes of the external stress,stress ratio and cyclic number.The volume expansion accompanying the transforma- tion creates an additional residual displacement of about 0.44μm on fracture surfaces,which is equivalent to the magnitude of the plasticity-induced residual displacement.The phase transformation induced fatigue crack closure is believed to be an important factor affecting the fatigue crack behaviors in the high carbon laver of the carburized case. 展开更多
关键词 retained austenite fatigue crack growth strain induced martensitic trarsformation phase transformation induced crack closure
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部