Two different species, Trichoderma viride TV10 and Trichoderma harzianum TH12 from 30 Trichoderma isolates were selected out based on their high growth inhibition of the phytopathogen Sclerotinia sclerotiorum (Lib) de...Two different species, Trichoderma viride TV10 and Trichoderma harzianum TH12 from 30 Trichoderma isolates were selected out based on their high growth inhibition of the phytopathogen Sclerotinia sclerotiorum (Lib) de Bary, which reached 84.44% and 100%, respectively. Their untreated culture filtrates (CF) and culture filtrates treated with heat (CFH) also were tested for growth inhibition of the pathogen in potato dextrose agar (PDA). Morphological and molecular characterisation by internal transcribed spacer (ITS) PCR provided consistent identification of these isolates. The degree of infection and disease index (DI) of S. sclerotiorum were examined in Brassica napus (AACC) and Raphanus alboglabra (RR) and Brassica alboglabra (CC). The results revealed that Raphanus alboglabra showed higher disease resistance than that of B. napus. Biotic elecitors T. harzianum TH12 and T. viride TV10 and their CF and CFH demonstrated the ability to cause induced systemic resistance (ISR) in B. napus and Raphanus alboglabra against sclerotinia stem rot (SSR) disease. Furthermore, a high ability to reduce the degree of infection and DI in B. napus with the biotic elicitors T. harzianum TH12 and T. viride TV10 was observed, with numbers reaching 7.22% to 6.67% and 17.78% to 11.67%, respectively. When CF were used, reached 20.00% to 16.67% and 33.33% to 23.33%, respectively;with CFH, values reached 35.00% to 21.67% and 37.78% to 28.33%, respectively. While in Raphanus alboglabra the degree of infection and DI reached 0.00% and 0.00% with all biotic elicitors treatments. These results show that biotic elicitor treatments significantly (P B. napus and Raphanus alboglabra ranked as most effective. This study showed for the first time the ability of genotype Raphanus alboglabra (RRCC) to demonstrate resistance against S. sclerotiorum with or without treatment by biotic elicitors and the ability of genotype B. napus (AACC) to demonstrate resistance to the pathogen after treatment with biotic elicitors.展开更多
β,amino butyric acid (BABA) induced resistance against?Meloigogyne?spp in tomato. Significantly (p?= 0.05) less, 41.11 second stage juveniles (J2) enter the roots of treated than, 116.66 J2 in untreated control plant...β,amino butyric acid (BABA) induced resistance against?Meloigogyne?spp in tomato. Significantly (p?= 0.05) less, 41.11 second stage juveniles (J2) enter the roots of treated than, 116.66 J2 in untreated control plants. Root fresh and dry weight (Rfw, Rdw) were 2.87 and 0.12 g in treated compared with 4.78 and 0.30 g in nematode infected control plants respectively, 30 d after nematode inoculation. Sfw and Sdw were 8.62 and 0.60 g compared with 3.94 and 0.22 g in control plants. Foliage spray at 40 and 20 mM of BABA was more effective than 10 and 5 mM treatments. The former two concentrations recorded the lowest, average gall index, 2.11 compared with 3.33, 4.11, and 5 for the latter two concentrations and nematode infected control respectively. Results also indicated that treatments with BABA prior to nematode inoculation were superior in inducing resistance toMeloidogyne?spp over treatment at the time or after nematode inoculation.展开更多
In recent years,the progression of stem cell therapies has shown great promise in advancing the nascent field of regenerative medicine.Considering the non-regenerative nature of the mature central nervous system,the c...In recent years,the progression of stem cell therapies has shown great promise in advancing the nascent field of regenerative medicine.Considering the non-regenerative nature of the mature central nervous system,the concept that“blank”cells could be reprogrammed and functionally integrated into host neural networks remained intriguing.Previous work has also demonstrated the ability of such cells to stimulate intrinsic growth programs in post-mitotic cells,such as neurons.While embryonic stem cells demonstrated great potential in treating central nervous system pathologies,ethical and technical concerns remained.These barriers,along with the clear necessity for this type of treatment,ultimately prompted the advent of induced pluripotent stem cells.The advantage of pluripotent cells in central nervous system regeneration is multifaceted,permitting differentiation into neural stem cells,neural progenitor cells,glia,and various neuronal subpopulations.The precise spatiotemporal application of extrinsic growth factors in vitro,in addition to microenvironmental signaling in vivo,influences the efficiency of this directed differentiation.While the pluri-or multipotency of these cells is appealing,it also poses the risk of unregulated differentiation and teratoma formation.Cells of the neuroectodermal lineage,such as neuronal subpopulations and glia,have been explored with varying degrees of success.Although the risk of cancer or teratoma formation is greatly reduced,each subpopulation varies in effectiveness and is influenced by a myriad of factors,such as the timing of the transplant,pathology type,and the ratio of accompanying progenitor cells.Furthermore,successful transplantation requires innovative approaches to develop delivery vectors that can mitigate cell death and support integration.Lastly,host immune responses to allogeneic grafts must be thoroughly characterized and further developed to reduce the need for immunosuppression.Translation to a clinical setting will involve careful consideration when assessing both physiologic and functional outcomes.This review will highlight both successes and challenges faced when using human induced pluripotent stem cell-derived cell transplantation therapies to promote endogenous regeneration.展开更多
Purpose–The purpose of this study is to address the deficiency in safety monitoring technology for 27.5 kV high-voltage cables within the railway traction power supply by analyzing the grounding methods employed in h...Purpose–The purpose of this study is to address the deficiency in safety monitoring technology for 27.5 kV high-voltage cables within the railway traction power supply by analyzing the grounding methods employed in high-speed railways and developing an effective monitoring solution.Design/methodology/approach–Through establishing a mathematical model of induced potential in the cable sheath and analyzing its influencing factors,the principle of grounding current monitoring is proposed.Furthermore,the accuracy of data collection and alarm function of the monitoring equipment were verified through laboratory simulation experiments.Finally,through practical application in the traction substation of the railway bureau on site,a large amount of data were collected to verify the stability and reliability of the monitoring system in actual environments.Findings–The experimental results show that the designed monitoring system can effectively monitor the grounding current of high-voltage cables and respond promptly to changes in cable insulation status.The system performs excellently in terms of data collection accuracy,real-time performance and reliability of alarm functions.In addition,the on-site trial results further confirm the accuracy and reliability of the monitoring system in practical applications,providing strong technical support for the safe operation of highspeed railway traction power supply systems.Originality/value–This study innovatively develops a 27.5kV high-voltage cable grounding current monitoring system,which provides a new technical means for evaluating the insulation status of cables by accurately measuring the grounding current.The design,experimental verification and application of this system in high-speed railway traction power supply systems have demonstrated significant academic value and practical significance,contributing innovative solutions to the field of railway power supply safety monitoring.展开更多
Stem cell-based brain repair is a promising emergent therapy for Parkinson's disease based on years of foundational research using human fetal donors as a cell source.Unlike current therapeutic options for patient...Stem cell-based brain repair is a promising emergent therapy for Parkinson's disease based on years of foundational research using human fetal donors as a cell source.Unlike current therapeutic options for patients,this approach has the potential to provide longterm stem cell–derived reconstruction and restoration of the dopaminergic input to denervated regions of the brain allowing for restoration of certain functions to patients.The ultimate clinical success of stem cell–derived brain repair will depend on both the safety and efficacy of the approach and the latter is dependent on the ability of the transplanted cells to survive and differentiate into functional dopaminergic neurons in the Parkinsonian brain.Because the pre-clinical literature suggests that there is considerable variability in survival and differentiation between studies,the aim of this systematic review was to assess these parameters in human stem cell-derived dopaminergic progenitor transplant studies in animal models of Parkinson's disease.A defined systematic search of the PubMed database was completed to identify relevant studies published up to March 2024.After screening,76 articles were included in the analysis from which 178 separate transplant studies were identified.From these,graft survival could be assessed in 52 studies and differentiation in 129 studies.Overall,we found that graft survival ranged from<1% to 500% of cells transplanted,with a median of 51%of transplanted cells surviving in the brain;while dopaminergic differentiation of the cells ranged from 0% to 46% of cells transplanted with a median of 3%.This systematic review suggests that there is considerable scope for improvement in the differentiation of stem cell-derived dopaminergic progenitors to maximize the therapeutic potential of this approach for patients.展开更多
Microglial activation that occurs rapidly after closed head injury may play important and complex roles in neuroinflammation-associated neuronal damage and repair.We previously reported that induced neural stem cells ...Microglial activation that occurs rapidly after closed head injury may play important and complex roles in neuroinflammation-associated neuronal damage and repair.We previously reported that induced neural stem cells can modulate the behavior of activated microglia via CXCL12/CXCR4 signaling,influencing their activation such that they can promote neurological recovery.However,the mechanism of CXCR4 upregulation in induced neural stem cells remains unclear.In this study,we found that nuclear factor-κB activation induced by closed head injury mouse serum in microglia promoted CXCL12 and tumor necrosis factor-αexpression but suppressed insulin-like growth factor-1 expression.However,recombinant complement receptor 2-conjugated Crry(CR2-Crry)reduced the effects of closed head injury mouse serum-induced nuclear factor-κB activation in microglia and the levels of activated microglia,CXCL12,and tumor necrosis factor-α.Additionally,we observed that,in response to stimulation(including stimulation by CXCL12 secreted by activated microglia),CXCR4 and Crry levels can be upregulated in induced neural stem cells via the interplay among CXCL12/CXCR4,Crry,and Akt signaling to modulate microglial activation.In agreement with these in vitro experimental results,we found that Akt activation enhanced the immunoregulatory effects of induced neural stem cell grafts on microglial activation,leading to the promotion of neurological recovery via insulin-like growth factor-1 secretion and the neuroprotective effects of induced neural stem cell grafts through CXCR4 and Crry upregulation in the injured cortices of closed head injury mice.Notably,these beneficial effects of Akt activation in induced neural stem cells were positively correlated with the therapeutic effects of induced neural stem cells on neuronal injury,cerebral edema,and neurological disorders post–closed head injury.In conclusion,our findings reveal that Akt activation may enhance the immunoregulatory effects of induced neural stem cells on microglial activation via upregulation of CXCR4 and Crry,thereby promoting induced neural stem cell–mediated improvement of neuronal injury,cerebral edema,and neurological disorders following closed head injury.展开更多
The progressive loss of dopaminergic neurons in affected patient brains is one of the pathological features of Parkinson's disease,the second most common human neurodegenerative disease.Although the detailed patho...The progressive loss of dopaminergic neurons in affected patient brains is one of the pathological features of Parkinson's disease,the second most common human neurodegenerative disease.Although the detailed pathogenesis accounting for dopaminergic neuron degeneration in Parkinson's disease is still unclear,the advancement of stem cell approaches has shown promise for Parkinson's disease research and therapy.The induced pluripotent stem cells have been commonly used to generate dopaminergic neurons,which has provided valuable insights to improve our understanding of Parkinson's disease pathogenesis and contributed to anti-Parkinson's disease therapies.The current review discusses the practical approaches and potential applications of induced pluripotent stem cell techniques for generating and differentiating dopaminergic neurons from induced pluripotent stem cells.The benefits of induced pluripotent stem cell-based research are highlighted.Various dopaminergic neuron differentiation protocols from induced pluripotent stem cells are compared.The emerging three-dimension-based brain organoid models compared with conventional two-dimensional cell culture are evaluated.Finally,limitations,challenges,and future directions of induced pluripotent stem cell–based approaches are analyzed and proposed,which will be significant to the future application of induced pluripotent stem cell-related techniques for Parkinson's disease.展开更多
Small RNAs play an important role in plant immune responses. However, their regulatory function in induced systemic resistance(ISR) is nascent. Bacillus cereus AR156 is a plant growth-promoting rhizobacterium that i...Small RNAs play an important role in plant immune responses. However, their regulatory function in induced systemic resistance(ISR) is nascent. Bacillus cereus AR156 is a plant growth-promoting rhizobacterium that induces ISR in Arabidopsis against bacterial infection. Here,by comparing small RNA profiles of Pseudomonas syringae pv. tomato(Pst) DC3000-infected Arabidopsis with and without AR156 pretreatment, we identified a group of Arabidopsis micro RNAs(mi RNAs) that are differentially regulated by AR156 pretreatment. mi R825 and mi R825 are two mi RNA generated from a single mi RNA gene.Northern blot analysis indicated that they were significantly downregulated in Pst DC3000-infected plants pretreated with AR156, in contrast to the plants without AR156 pretreatment. mi R825 targets two ubiquitin-protein ligases,while mi R825 targets toll-interleukin-like receptor(TIR)-nucleotide binding site(NBS) and leucine-rich repeat(LRR)type resistance(R) genes. The expression of these target genes negatively correlated with the expression of mi R825 and mi R825. Moreover, transgenic plants showing reduced expression of mi R825 and mi R825 displayed enhanced resistance to Pst DC3000 infection, whereas transgenic plants overexpressing mi R825 and mi R825 were more susceptible. Taken together, our data indicates that Bacillus cereus AR156 pretreatment primes ISR to Pst infection by suppressing mi R825 and mi R825 and activating the defense related genes they targeted.展开更多
Here wc report calculation of the differential interference angles (including b≤p gild b≥p ) for singlet-triplet mixed states of Na2(A^1∑u^+,ν=8-b^3∏0u,ν=14) system in collision with Na, in order to study t...Here wc report calculation of the differential interference angles (including b≤p gild b≥p ) for singlet-triplet mixed states of Na2(A^1∑u^+,ν=8-b^3∏0u,ν=14) system in collision with Na, in order to study the collision- induced quantum interference on rotational energy transfer in an atom-diatom system. The calculation is based on the first-order Born approximation of time-dependent perturbation theory, and the anisotropic Lennard-Jones intcraction potentials are also employed, The relationships between differential interference angle and impact parameter, including collision diameter and velocity, are obtained,展开更多
In this paper we address the dynamics of compensation cutting process from both Laplace s frequency domain and the time domain of the first time, using the two computer aided analyzing softwares: MATLAB and SIMULI...In this paper we address the dynamics of compensation cutting process from both Laplace s frequency domain and the time domain of the first time, using the two computer aided analyzing softwares: MATLAB and SIMULINK. Theoretical analysis and simulation experiments firstly show that not only the systematical stiffness of workpiece, spindle and tools, but also the regenerated coefficient affects the compensation displacement effect. The results show that the SREC is practicable in reality to decease the spindle induced errors in many engineering applications such as hard boring through simulation and the preliminary experiment results.展开更多
Background: As a promising biomarker of hepatocellular carcinoma(HCC), protein induced by vitamin K absence or antagonist-Ⅱ(PIVKA-Ⅱ) has been studied extensively. However, its diagnostic capability varies across HCC...Background: As a promising biomarker of hepatocellular carcinoma(HCC), protein induced by vitamin K absence or antagonist-Ⅱ(PIVKA-Ⅱ) has been studied extensively. However, its diagnostic capability varies across HCC studies. This study aimed to compare the performance of PIVKA-Ⅱ with alpha-fetoprotein(AFP) in the diagnosis of HCC. Data sources: A systematic literature search was conducted to identify the studies from MEDLINE, Embase and Cochrane Library Databases, which were published up to December 20, 2017 to compare the diagnostic capability of PIVKA-Ⅱ and AFP for HCC. The data were pooled using random effects model. Pooled sensitivity and specificity were calculated. Summary receiver operating characteristic curve(ROC) was employed to evaluate the diagnostic accuracy of each marker. Results: Thirty-one studies were included. The pooled sensitivity(95% CI) of PIVKA-Ⅱ and AFP was 0.66(0.65–0.68) and 0.66(0.65–0.67), respectively in diagnosis of HCC; and the corresponding pooled specificity(95% CI) was 0.89(0.88–0.90) and 0.84(0.83–0.85), respectively. The area under the ROC curve(AUC) of PIVKA-Ⅱ and AFP was 0.856(0.817–0.895) and 0.770(0.728–0.811), respectively. Subgroup analysis showed that PIVKA-Ⅱ was superior to AFP in terms of the AUC for both small HCC( < 3 cm) [0.863(0.825–0.901) vs 0.717(0.658–0.776)] and large HCC( ≥ 3 cm) [0.854(0.811–0.897) vs 0.729(0.682–0.776)]; for American [0.926(0.897–0.955) vs 0.698(0.594–0.662)], European [0.772(0.743–0.801) vs 0.628(0.594–0.662)], Asian [0.838(0.812–0.864) vs 0.785(0.764–0.806)] and African [0.812(0.794–0.840) vs 0.721(0.675–0.767)] HCC patients; and for HBV-related [0.909(0.866–0.951) vs 0.714(0.673–0.755)] and mixed-etiology [0.847(0.821–0.873) vs 0.794(0.772–0.816)] HCC. Conclusion: This meta-analysis indicates that PIVKA-Ⅱ is better than AFP in terms of the accuracy for diagnosing HCC, regardless of tumor size, patient ethnic group, or HCC etiology.展开更多
BACKGROUND The use of herbal supplements and alternative medicines has been increasing in the last decades.Despite popular belief that the consumption of natural products is harmless,herbs might cause injury to variou...BACKGROUND The use of herbal supplements and alternative medicines has been increasing in the last decades.Despite popular belief that the consumption of natural products is harmless,herbs might cause injury to various organs,particularly to the liver,which is responsible for their metabolism in the form of herb-induced liver injury(HILI).AIM To identify herbal products associated with HILI and describe the type of lesion associated with each product.METHODS Studies were retrieved using Medical Subject Headings Descriptors combined with Boolean operators.Searches were run on the electronic databases Scopus,Web of Science,MEDLINE,BIREME,LILACS,Cochrane Library for Systematic Reviews,SciELO,Embase,and Opengray.eu.Languages were restricted to English,Spanish,and Portuguese.There was no date of publication restrictions.The reference lists of the studies retrieved were searched manually.To access causality,the Maria and Victorino System of Causality Assessment in Drug Induced Liver Injury was used.Simple descriptive analysis were used to summarize the results.RESULTS The search strategy retrieved 5918 references.In the final analysis,446 references were included,with a total of 936 cases reported.We found 79 types of herbs or herbal compounds related to HILI.He-Shou-Wu,Green tea extract,Herbalife,kava kava,Greater celandine,multiple herbs,germander,hydroxycut,skullcap,kratom,Gynura segetum,garcinia cambogia,ma huang,chaparral,senna,and aloe vera were the most common supplements with HILI reported.Most of these patients had complete clinical recovery(82.8%).However,liver transplantation was necessary for 6.6%of these cases.Also,chronic liver disease and death were observed in 1.5%and 10.4%of the cases,respectively.CONCLUSION HILI is normally associated with a good prognosis,once the implied product is withdrawn.Nevertheless,it is paramount to raise awareness in the medical and non-medical community of the risks of the indiscriminate use of herbal products.展开更多
With the help of similar material simulation test,time series system for induced caving of roof in continuous mining under complex backfill in ore body No.92 of Tongkeng Tin Mine was studied. According to the similari...With the help of similar material simulation test,time series system for induced caving of roof in continuous mining under complex backfill in ore body No.92 of Tongkeng Tin Mine was studied. According to the similarity theory,a two-dimensional similar simulation test-bed was constructed. The stress and displacement that change along with the advance of mining were acquired and analyzed automatically by data system. The processes of continuous mining of ore-block in 5 intervals and artificial induced caving of roof were simulated. The results of the test show that ore body remained as safety roof in thickness of 15 m guarantees the safe advance of stoping work face. Caving of safety roof puts in practice at the first two mining intervals when the third interval of continuous mining is finished,and one interval as the safety distance should be kept all the time between stopping and caving. While mining in the last interval,pre-slotting should be implemented first of all,and the roof of the last two mining intervals is caved simultaneously. Only this kind of time series system can be an efficient and safe way for induced caving of roof in continuous mining.展开更多
Induced systemic resistance(ISR)is a mechanism by which certain plant beneficial rhizobacteria and fungi produce immunity,which can stimulate crop growth and resilience against various phytopathogens,insects,and paras...Induced systemic resistance(ISR)is a mechanism by which certain plant beneficial rhizobacteria and fungi produce immunity,which can stimulate crop growth and resilience against various phytopathogens,insects,and parasites.These beneficial rhizobacteria and fungi improve plant performance by regulating hormone signaling,including salicylic acid(SA),jasmonic acid(JA),prosystemin,pathogenesis-related gene 1,and ethylene(ET)pathways,which activate the gene expression of ISR,the synthesis of secondary metabolites,various enzymes,and volatile compounds that ultimately induce defense mechanisms in plant.To protect themselves from disease,plants have various advanced defense mechanisms in which local acquired resistance,systemic gene silencing,systemic wound response,systemic acquired resistance(SAR),and ISR are involved.Several rhizobacteria activate the SA-dependent SAR pathway by producing SA at the root’s surface.In contrast,other rhizobacteria can activate different signaling pathways independent of SA(SA-independent ISR pathways)such as those dependent on JA and ET signaling.The main objective of this review is to provide insight into the types of induced resistance utilized for plant defense.Further to this,the genetic approaches used to suppress disease-causing genes,i.e.,RNA interference and antisense RNA,which are still underutilized in sustainable agriculture,along with the current vision for virus-induced gene silencing are also discussed.展开更多
The propagation of a probe field through a four-level Y-type atomic system is described in the presence of two additional coherent radiation fields,namely,the control field and the coupling field.An expression for the...The propagation of a probe field through a four-level Y-type atomic system is described in the presence of two additional coherent radiation fields,namely,the control field and the coupling field.An expression for the probe response is derived analytically from the optical Bloch equations under steady state condition to study the absorptive properties of the system under probe field propagation through an ensemble of stationary atoms as well as in a Doppler broadened atomic vapor medium.The most striking result is the conversion of electromagnetically induced transparency(EIT)into electromagnetically induced absorption(EIA)as we start switching from weak probe regime to strong probe regime.The dependence of this conversion on residual Doppler averaging due to wavelength mismatch is also shown by choosing the coupling transition as a Rydberg transition.展开更多
The electromagnetically induced grating effect in thermal and cold atoms has been studied theoretically. Studies have shown that, by adjusting the parameters, the first-order diffraction efficiency of the probe beam i...The electromagnetically induced grating effect in thermal and cold atoms has been studied theoretically. Studies have shown that, by adjusting the parameters, the first-order diffraction efficiency of the probe beam in the cold atomic system and the thermal atomic system is 34% and 31%, respectively, which is very close to the ideal diffraction efficiency of the sinusoidal grating. However, it is more difficult to prepare the cold atomic system than to prepare the thermal atomic system in the practical application, so the study of the electromagnetically induced grating effect in the thermal atomic system may be helpful for practical applications.展开更多
An established model was presented as a new kind of means for investigating flow induced corrosion. In this method the near-wall hydrodynamic parameters including wall shear stress τ and mass transfer coefficient k n...An established model was presented as a new kind of means for investigating flow induced corrosion. In this method the near-wall hydrodynamic parameters including wall shear stress τ and mass transfer coefficient k near the wall of materials can be numerically calculated, and combining corrosive kinetics tested by experiments, the corrosion rates can be also calculated accurately. The flow induced corrosion mechanism was further verified by numerical results in this model, and the various corrosion phenomena were explained. The modelled results also show that the ability to accurately utilize numerical method to study flow induced corrosion strongly to some extent depends on material corrosive kinetics processes tested by experiments.展开更多
We theoretically explore the tunability of magnomechanically induced transparency(MMIT) phenomenon and fastslow light effect in a hybrid cavity magnomechanical system in which a high-quality yttrium iron garnet(YIG) s...We theoretically explore the tunability of magnomechanically induced transparency(MMIT) phenomenon and fastslow light effect in a hybrid cavity magnomechanical system in which a high-quality yttrium iron garnet(YIG) sphere and an atomic ensemble are placed inside a microwave cavity. In the probe output spectrum, we can observe magnoninduced transparency(MIT) and MMIT due to the photon-magnon and phonon-magnon couplings. We further investigate the effect of atomic ensemble on the absorption spectrum. The results show that better transparency can be obtained by choosing appropriate atomic ensemble parameters. We give an explicit explanation for the mechanism of the Fano resonance phenomenon. Moreover, we discuss phenomena of slow-light propagation. The maximum group delay increases significantly with the increasing atom–cavity coupling strength, and the conversion between slow light and fast light can also be achieved by adjusting the atom–cavity coupling strength. These results may have potential applications for quantum information processing and high precision measurements.展开更多
We study a three-mode double-cavity optomechanical system in which an oscillating membrane of perfect reflection is inserted between two fixed mirrors of partial transmission. We find that electromagnetically induced ...We study a three-mode double-cavity optomechanical system in which an oscillating membrane of perfect reflection is inserted between two fixed mirrors of partial transmission. We find that electromagnetically induced transparency (EIT) can be realized and controlled in this optomechanical system by adjusting the relative intensity and the relative phase between left-hand and right-hand input (probe and coupling) fields. In particular, one perfect EIT window is seen to occur when the two probe fields are exactly out of phase and the EIT window's width is very sensitive to the relative intensity of two coupling fields. Our numerical findings may be extended to achieve optomechanical storage and switching schemes applicable in quantum information processing.展开更多
We theoretically explore the tunability of optomechanically induced transparency(OMIT)phenomenon and fast-slow light effect in a loop-coupled hybrid optomechanical system in which two optical modes are coupled to a co...We theoretically explore the tunability of optomechanically induced transparency(OMIT)phenomenon and fast-slow light effect in a loop-coupled hybrid optomechanical system in which two optical modes are coupled to a common mechanical mode.In the probe output spectrum,we find that the interference phenomena OMIT caused by the optomechanical interactions and the normal mode splitting(NMS)induced by the strong tunnel coupling between the cavities can be observed.We further observe that the tunnel interaction will affect the distance and the heights of the sideband absorption peaks.The results also show that the switch from absorption to amplification can be realized by tuning the driving strength because of the existence of stability condition.Except from modulating the tunnel interaction,the conversion between slow light and fast light also can be achieved by adjusting the optomechanical interaction in the output field.This study may provide a potential application in the fields of high precision measurement and quantum information processing.展开更多
文摘Two different species, Trichoderma viride TV10 and Trichoderma harzianum TH12 from 30 Trichoderma isolates were selected out based on their high growth inhibition of the phytopathogen Sclerotinia sclerotiorum (Lib) de Bary, which reached 84.44% and 100%, respectively. Their untreated culture filtrates (CF) and culture filtrates treated with heat (CFH) also were tested for growth inhibition of the pathogen in potato dextrose agar (PDA). Morphological and molecular characterisation by internal transcribed spacer (ITS) PCR provided consistent identification of these isolates. The degree of infection and disease index (DI) of S. sclerotiorum were examined in Brassica napus (AACC) and Raphanus alboglabra (RR) and Brassica alboglabra (CC). The results revealed that Raphanus alboglabra showed higher disease resistance than that of B. napus. Biotic elecitors T. harzianum TH12 and T. viride TV10 and their CF and CFH demonstrated the ability to cause induced systemic resistance (ISR) in B. napus and Raphanus alboglabra against sclerotinia stem rot (SSR) disease. Furthermore, a high ability to reduce the degree of infection and DI in B. napus with the biotic elicitors T. harzianum TH12 and T. viride TV10 was observed, with numbers reaching 7.22% to 6.67% and 17.78% to 11.67%, respectively. When CF were used, reached 20.00% to 16.67% and 33.33% to 23.33%, respectively;with CFH, values reached 35.00% to 21.67% and 37.78% to 28.33%, respectively. While in Raphanus alboglabra the degree of infection and DI reached 0.00% and 0.00% with all biotic elicitors treatments. These results show that biotic elicitor treatments significantly (P B. napus and Raphanus alboglabra ranked as most effective. This study showed for the first time the ability of genotype Raphanus alboglabra (RRCC) to demonstrate resistance against S. sclerotiorum with or without treatment by biotic elicitors and the ability of genotype B. napus (AACC) to demonstrate resistance to the pathogen after treatment with biotic elicitors.
文摘β,amino butyric acid (BABA) induced resistance against?Meloigogyne?spp in tomato. Significantly (p?= 0.05) less, 41.11 second stage juveniles (J2) enter the roots of treated than, 116.66 J2 in untreated control plants. Root fresh and dry weight (Rfw, Rdw) were 2.87 and 0.12 g in treated compared with 4.78 and 0.30 g in nematode infected control plants respectively, 30 d after nematode inoculation. Sfw and Sdw were 8.62 and 0.60 g compared with 3.94 and 0.22 g in control plants. Foliage spray at 40 and 20 mM of BABA was more effective than 10 and 5 mM treatments. The former two concentrations recorded the lowest, average gall index, 2.11 compared with 3.33, 4.11, and 5 for the latter two concentrations and nematode infected control respectively. Results also indicated that treatments with BABA prior to nematode inoculation were superior in inducing resistance toMeloidogyne?spp over treatment at the time or after nematode inoculation.
基金supported by Ohio State Start Up FundNational Institutes of Health(NIH)+12 种基金Department of Defense(DoD)Wings for Life Spinal Cord Research Foundation,Wings for Life Spinal Cord Research Foundation(Austria)California Institute of Regenerative Medicine(CIRM)International Spinal Research Trust(United Kingdom)Stanford University Bio-X Program Interdisciplinary Initiatives Seed Grant IIP-7Dennis Chan FoundationKlein Family FundLucile Packard Foundation for Children's HealthStanford Institute for Neuro-Innovation and Translational Neurosciences(SINTN)Saunders Family Neuroscience FundJames Doty Neurosurgery FundHearst Neuroscience FundEileen Bond Research Fund(to GP)。
文摘In recent years,the progression of stem cell therapies has shown great promise in advancing the nascent field of regenerative medicine.Considering the non-regenerative nature of the mature central nervous system,the concept that“blank”cells could be reprogrammed and functionally integrated into host neural networks remained intriguing.Previous work has also demonstrated the ability of such cells to stimulate intrinsic growth programs in post-mitotic cells,such as neurons.While embryonic stem cells demonstrated great potential in treating central nervous system pathologies,ethical and technical concerns remained.These barriers,along with the clear necessity for this type of treatment,ultimately prompted the advent of induced pluripotent stem cells.The advantage of pluripotent cells in central nervous system regeneration is multifaceted,permitting differentiation into neural stem cells,neural progenitor cells,glia,and various neuronal subpopulations.The precise spatiotemporal application of extrinsic growth factors in vitro,in addition to microenvironmental signaling in vivo,influences the efficiency of this directed differentiation.While the pluri-or multipotency of these cells is appealing,it also poses the risk of unregulated differentiation and teratoma formation.Cells of the neuroectodermal lineage,such as neuronal subpopulations and glia,have been explored with varying degrees of success.Although the risk of cancer or teratoma formation is greatly reduced,each subpopulation varies in effectiveness and is influenced by a myriad of factors,such as the timing of the transplant,pathology type,and the ratio of accompanying progenitor cells.Furthermore,successful transplantation requires innovative approaches to develop delivery vectors that can mitigate cell death and support integration.Lastly,host immune responses to allogeneic grafts must be thoroughly characterized and further developed to reduce the need for immunosuppression.Translation to a clinical setting will involve careful consideration when assessing both physiologic and functional outcomes.This review will highlight both successes and challenges faced when using human induced pluripotent stem cell-derived cell transplantation therapies to promote endogenous regeneration.
基金the China Railway Wuhan Bureau Group Co.,Ltd.under the 2023 Science and Technology Research and Development Plan(Second Batch)(Wuhan Railway Science and Information Letter[2023]No.269),classification code 23GD07.
文摘Purpose–The purpose of this study is to address the deficiency in safety monitoring technology for 27.5 kV high-voltage cables within the railway traction power supply by analyzing the grounding methods employed in high-speed railways and developing an effective monitoring solution.Design/methodology/approach–Through establishing a mathematical model of induced potential in the cable sheath and analyzing its influencing factors,the principle of grounding current monitoring is proposed.Furthermore,the accuracy of data collection and alarm function of the monitoring equipment were verified through laboratory simulation experiments.Finally,through practical application in the traction substation of the railway bureau on site,a large amount of data were collected to verify the stability and reliability of the monitoring system in actual environments.Findings–The experimental results show that the designed monitoring system can effectively monitor the grounding current of high-voltage cables and respond promptly to changes in cable insulation status.The system performs excellently in terms of data collection accuracy,real-time performance and reliability of alarm functions.In addition,the on-site trial results further confirm the accuracy and reliability of the monitoring system in practical applications,providing strong technical support for the safe operation of highspeed railway traction power supply systems.Originality/value–This study innovatively develops a 27.5kV high-voltage cable grounding current monitoring system,which provides a new technical means for evaluating the insulation status of cables by accurately measuring the grounding current.The design,experimental verification and application of this system in high-speed railway traction power supply systems have demonstrated significant academic value and practical significance,contributing innovative solutions to the field of railway power supply safety monitoring.
基金supported by research grants from the Michael J Fox Foundation for Parkinson’s Research(grant numbers:17244 and 023410)Science Foundation Ireland(Grant Numbers:19/FFP/6554)(to ED)。
文摘Stem cell-based brain repair is a promising emergent therapy for Parkinson's disease based on years of foundational research using human fetal donors as a cell source.Unlike current therapeutic options for patients,this approach has the potential to provide longterm stem cell–derived reconstruction and restoration of the dopaminergic input to denervated regions of the brain allowing for restoration of certain functions to patients.The ultimate clinical success of stem cell–derived brain repair will depend on both the safety and efficacy of the approach and the latter is dependent on the ability of the transplanted cells to survive and differentiate into functional dopaminergic neurons in the Parkinsonian brain.Because the pre-clinical literature suggests that there is considerable variability in survival and differentiation between studies,the aim of this systematic review was to assess these parameters in human stem cell-derived dopaminergic progenitor transplant studies in animal models of Parkinson's disease.A defined systematic search of the PubMed database was completed to identify relevant studies published up to March 2024.After screening,76 articles were included in the analysis from which 178 separate transplant studies were identified.From these,graft survival could be assessed in 52 studies and differentiation in 129 studies.Overall,we found that graft survival ranged from<1% to 500% of cells transplanted,with a median of 51%of transplanted cells surviving in the brain;while dopaminergic differentiation of the cells ranged from 0% to 46% of cells transplanted with a median of 3%.This systematic review suggests that there is considerable scope for improvement in the differentiation of stem cell-derived dopaminergic progenitors to maximize the therapeutic potential of this approach for patients.
基金supported by the National Natural Science Foundation of China,Nos.82271397(to MG),82001293(to MG),82171355(to RX),81971295(to RX),and 81671189(to RX)。
文摘Microglial activation that occurs rapidly after closed head injury may play important and complex roles in neuroinflammation-associated neuronal damage and repair.We previously reported that induced neural stem cells can modulate the behavior of activated microglia via CXCL12/CXCR4 signaling,influencing their activation such that they can promote neurological recovery.However,the mechanism of CXCR4 upregulation in induced neural stem cells remains unclear.In this study,we found that nuclear factor-κB activation induced by closed head injury mouse serum in microglia promoted CXCL12 and tumor necrosis factor-αexpression but suppressed insulin-like growth factor-1 expression.However,recombinant complement receptor 2-conjugated Crry(CR2-Crry)reduced the effects of closed head injury mouse serum-induced nuclear factor-κB activation in microglia and the levels of activated microglia,CXCL12,and tumor necrosis factor-α.Additionally,we observed that,in response to stimulation(including stimulation by CXCL12 secreted by activated microglia),CXCR4 and Crry levels can be upregulated in induced neural stem cells via the interplay among CXCL12/CXCR4,Crry,and Akt signaling to modulate microglial activation.In agreement with these in vitro experimental results,we found that Akt activation enhanced the immunoregulatory effects of induced neural stem cell grafts on microglial activation,leading to the promotion of neurological recovery via insulin-like growth factor-1 secretion and the neuroprotective effects of induced neural stem cell grafts through CXCR4 and Crry upregulation in the injured cortices of closed head injury mice.Notably,these beneficial effects of Akt activation in induced neural stem cells were positively correlated with the therapeutic effects of induced neural stem cells on neuronal injury,cerebral edema,and neurological disorders post–closed head injury.In conclusion,our findings reveal that Akt activation may enhance the immunoregulatory effects of induced neural stem cells on microglial activation via upregulation of CXCR4 and Crry,thereby promoting induced neural stem cell–mediated improvement of neuronal injury,cerebral edema,and neurological disorders following closed head injury.
基金supported by Singapore National Medical Research Council(NMRC)grants,including CS-IRG,HLCA2022(to ZDZ),STaR,OF LCG 000207(to EKT)a Clinical Translational Research Programme in Parkinson's DiseaseDuke-Duke-NUS collaboration pilot grant(to ZDZ)。
文摘The progressive loss of dopaminergic neurons in affected patient brains is one of the pathological features of Parkinson's disease,the second most common human neurodegenerative disease.Although the detailed pathogenesis accounting for dopaminergic neuron degeneration in Parkinson's disease is still unclear,the advancement of stem cell approaches has shown promise for Parkinson's disease research and therapy.The induced pluripotent stem cells have been commonly used to generate dopaminergic neurons,which has provided valuable insights to improve our understanding of Parkinson's disease pathogenesis and contributed to anti-Parkinson's disease therapies.The current review discusses the practical approaches and potential applications of induced pluripotent stem cell techniques for generating and differentiating dopaminergic neurons from induced pluripotent stem cells.The benefits of induced pluripotent stem cell-based research are highlighted.Various dopaminergic neuron differentiation protocols from induced pluripotent stem cells are compared.The emerging three-dimension-based brain organoid models compared with conventional two-dimensional cell culture are evaluated.Finally,limitations,challenges,and future directions of induced pluripotent stem cell–based approaches are analyzed and proposed,which will be significant to the future application of induced pluripotent stem cell-related techniques for Parkinson's disease.
基金supported by a Joint Research Fund for Overseas,Hong Kong and Macao Scholars(31228018)to HJ and JGNIH grant(R01GM093008)to HJ+5 种基金NIH grant-(R01GM100364)a grant from Natural Science Foundation of Jiangsu Province of China(BK20141360)a PhD Programs Foundation of Ministry of Education of China(B0201300664)to HZan National Science Foundation grant(DBI-0743797)to WZa Talent Development Program of Wuhan,the municipal government of Wuhan,Hubei,China(2014070504020241)an internal research grant of Jianghan University,Wuhan,China to WZ
文摘Small RNAs play an important role in plant immune responses. However, their regulatory function in induced systemic resistance(ISR) is nascent. Bacillus cereus AR156 is a plant growth-promoting rhizobacterium that induces ISR in Arabidopsis against bacterial infection. Here,by comparing small RNA profiles of Pseudomonas syringae pv. tomato(Pst) DC3000-infected Arabidopsis with and without AR156 pretreatment, we identified a group of Arabidopsis micro RNAs(mi RNAs) that are differentially regulated by AR156 pretreatment. mi R825 and mi R825 are two mi RNA generated from a single mi RNA gene.Northern blot analysis indicated that they were significantly downregulated in Pst DC3000-infected plants pretreated with AR156, in contrast to the plants without AR156 pretreatment. mi R825 targets two ubiquitin-protein ligases,while mi R825 targets toll-interleukin-like receptor(TIR)-nucleotide binding site(NBS) and leucine-rich repeat(LRR)type resistance(R) genes. The expression of these target genes negatively correlated with the expression of mi R825 and mi R825. Moreover, transgenic plants showing reduced expression of mi R825 and mi R825 displayed enhanced resistance to Pst DC3000 infection, whereas transgenic plants overexpressing mi R825 and mi R825 were more susceptible. Taken together, our data indicates that Bacillus cereus AR156 pretreatment primes ISR to Pst infection by suppressing mi R825 and mi R825 and activating the defense related genes they targeted.
基金This work was supported by National Natural Science Foundation of China(No.10374040).
文摘Here wc report calculation of the differential interference angles (including b≤p gild b≥p ) for singlet-triplet mixed states of Na2(A^1∑u^+,ν=8-b^3∏0u,ν=14) system in collision with Na, in order to study the collision- induced quantum interference on rotational energy transfer in an atom-diatom system. The calculation is based on the first-order Born approximation of time-dependent perturbation theory, and the anisotropic Lennard-Jones intcraction potentials are also employed, The relationships between differential interference angle and impact parameter, including collision diameter and velocity, are obtained,
文摘In this paper we address the dynamics of compensation cutting process from both Laplace s frequency domain and the time domain of the first time, using the two computer aided analyzing softwares: MATLAB and SIMULINK. Theoretical analysis and simulation experiments firstly show that not only the systematical stiffness of workpiece, spindle and tools, but also the regenerated coefficient affects the compensation displacement effect. The results show that the SREC is practicable in reality to decease the spindle induced errors in many engineering applications such as hard boring through simulation and the preliminary experiment results.
基金supported in part by the National Natural Sci-ence Foundation of China(81472284 and 81672699)Shanghai Pujiang Program(16PJD004)
文摘Background: As a promising biomarker of hepatocellular carcinoma(HCC), protein induced by vitamin K absence or antagonist-Ⅱ(PIVKA-Ⅱ) has been studied extensively. However, its diagnostic capability varies across HCC studies. This study aimed to compare the performance of PIVKA-Ⅱ with alpha-fetoprotein(AFP) in the diagnosis of HCC. Data sources: A systematic literature search was conducted to identify the studies from MEDLINE, Embase and Cochrane Library Databases, which were published up to December 20, 2017 to compare the diagnostic capability of PIVKA-Ⅱ and AFP for HCC. The data were pooled using random effects model. Pooled sensitivity and specificity were calculated. Summary receiver operating characteristic curve(ROC) was employed to evaluate the diagnostic accuracy of each marker. Results: Thirty-one studies were included. The pooled sensitivity(95% CI) of PIVKA-Ⅱ and AFP was 0.66(0.65–0.68) and 0.66(0.65–0.67), respectively in diagnosis of HCC; and the corresponding pooled specificity(95% CI) was 0.89(0.88–0.90) and 0.84(0.83–0.85), respectively. The area under the ROC curve(AUC) of PIVKA-Ⅱ and AFP was 0.856(0.817–0.895) and 0.770(0.728–0.811), respectively. Subgroup analysis showed that PIVKA-Ⅱ was superior to AFP in terms of the AUC for both small HCC( < 3 cm) [0.863(0.825–0.901) vs 0.717(0.658–0.776)] and large HCC( ≥ 3 cm) [0.854(0.811–0.897) vs 0.729(0.682–0.776)]; for American [0.926(0.897–0.955) vs 0.698(0.594–0.662)], European [0.772(0.743–0.801) vs 0.628(0.594–0.662)], Asian [0.838(0.812–0.864) vs 0.785(0.764–0.806)] and African [0.812(0.794–0.840) vs 0.721(0.675–0.767)] HCC patients; and for HBV-related [0.909(0.866–0.951) vs 0.714(0.673–0.755)] and mixed-etiology [0.847(0.821–0.873) vs 0.794(0.772–0.816)] HCC. Conclusion: This meta-analysis indicates that PIVKA-Ⅱ is better than AFP in terms of the accuracy for diagnosing HCC, regardless of tumor size, patient ethnic group, or HCC etiology.
文摘BACKGROUND The use of herbal supplements and alternative medicines has been increasing in the last decades.Despite popular belief that the consumption of natural products is harmless,herbs might cause injury to various organs,particularly to the liver,which is responsible for their metabolism in the form of herb-induced liver injury(HILI).AIM To identify herbal products associated with HILI and describe the type of lesion associated with each product.METHODS Studies were retrieved using Medical Subject Headings Descriptors combined with Boolean operators.Searches were run on the electronic databases Scopus,Web of Science,MEDLINE,BIREME,LILACS,Cochrane Library for Systematic Reviews,SciELO,Embase,and Opengray.eu.Languages were restricted to English,Spanish,and Portuguese.There was no date of publication restrictions.The reference lists of the studies retrieved were searched manually.To access causality,the Maria and Victorino System of Causality Assessment in Drug Induced Liver Injury was used.Simple descriptive analysis were used to summarize the results.RESULTS The search strategy retrieved 5918 references.In the final analysis,446 references were included,with a total of 936 cases reported.We found 79 types of herbs or herbal compounds related to HILI.He-Shou-Wu,Green tea extract,Herbalife,kava kava,Greater celandine,multiple herbs,germander,hydroxycut,skullcap,kratom,Gynura segetum,garcinia cambogia,ma huang,chaparral,senna,and aloe vera were the most common supplements with HILI reported.Most of these patients had complete clinical recovery(82.8%).However,liver transplantation was necessary for 6.6%of these cases.Also,chronic liver disease and death were observed in 1.5%and 10.4%of the cases,respectively.CONCLUSION HILI is normally associated with a good prognosis,once the implied product is withdrawn.Nevertheless,it is paramount to raise awareness in the medical and non-medical community of the risks of the indiscriminate use of herbal products.
基金Project(50490274) supported by the National Natural Science Foundation of ChinaProject(20050533035) supported by the Specialized Research Fund for the Doctoral Program of Higher Education of ChinaProject(1343-77236) supported by the Doctor Degree Paper Innovation Engineering of Central South University, China
文摘With the help of similar material simulation test,time series system for induced caving of roof in continuous mining under complex backfill in ore body No.92 of Tongkeng Tin Mine was studied. According to the similarity theory,a two-dimensional similar simulation test-bed was constructed. The stress and displacement that change along with the advance of mining were acquired and analyzed automatically by data system. The processes of continuous mining of ore-block in 5 intervals and artificial induced caving of roof were simulated. The results of the test show that ore body remained as safety roof in thickness of 15 m guarantees the safe advance of stoping work face. Caving of safety roof puts in practice at the first two mining intervals when the third interval of continuous mining is finished,and one interval as the safety distance should be kept all the time between stopping and caving. While mining in the last interval,pre-slotting should be implemented first of all,and the roof of the last two mining intervals is caved simultaneously. Only this kind of time series system can be an efficient and safe way for induced caving of roof in continuous mining.
基金Gujarat Arts and Science College,India and Raiganj University,India for their support
文摘Induced systemic resistance(ISR)is a mechanism by which certain plant beneficial rhizobacteria and fungi produce immunity,which can stimulate crop growth and resilience against various phytopathogens,insects,and parasites.These beneficial rhizobacteria and fungi improve plant performance by regulating hormone signaling,including salicylic acid(SA),jasmonic acid(JA),prosystemin,pathogenesis-related gene 1,and ethylene(ET)pathways,which activate the gene expression of ISR,the synthesis of secondary metabolites,various enzymes,and volatile compounds that ultimately induce defense mechanisms in plant.To protect themselves from disease,plants have various advanced defense mechanisms in which local acquired resistance,systemic gene silencing,systemic wound response,systemic acquired resistance(SAR),and ISR are involved.Several rhizobacteria activate the SA-dependent SAR pathway by producing SA at the root’s surface.In contrast,other rhizobacteria can activate different signaling pathways independent of SA(SA-independent ISR pathways)such as those dependent on JA and ET signaling.The main objective of this review is to provide insight into the types of induced resistance utilized for plant defense.Further to this,the genetic approaches used to suppress disease-causing genes,i.e.,RNA interference and antisense RNA,which are still underutilized in sustainable agriculture,along with the current vision for virus-induced gene silencing are also discussed.
基金UGC (ERO) for granting a minor research project (F. No. PSW: 050(2015–16), date-16/11/2016)UGC (New Delhi) for providing research fellowship (JRF-NET, vide sanction No. F.17-124/2008(SAI) dated 22/08/2014)+1 种基金SERB for granting a project under Teaching Associateship for Research Excellence (TARE) scheme (sanction no. TAR/2018/000710)the University Grants Commission (New Delhi) for sanctioning a major research project (F. No-43–527/2014(SR) dated 28/09/2015).
文摘The propagation of a probe field through a four-level Y-type atomic system is described in the presence of two additional coherent radiation fields,namely,the control field and the coupling field.An expression for the probe response is derived analytically from the optical Bloch equations under steady state condition to study the absorptive properties of the system under probe field propagation through an ensemble of stationary atoms as well as in a Doppler broadened atomic vapor medium.The most striking result is the conversion of electromagnetically induced transparency(EIT)into electromagnetically induced absorption(EIA)as we start switching from weak probe regime to strong probe regime.The dependence of this conversion on residual Doppler averaging due to wavelength mismatch is also shown by choosing the coupling transition as a Rydberg transition.
基金supported by the National Natural Science Foundation of China(Grants Nos.11004126 and 61275212)the Natural Science Foundation of Shanxi Province,China(Grant No.2011021003-1)
文摘The electromagnetically induced grating effect in thermal and cold atoms has been studied theoretically. Studies have shown that, by adjusting the parameters, the first-order diffraction efficiency of the probe beam in the cold atomic system and the thermal atomic system is 34% and 31%, respectively, which is very close to the ideal diffraction efficiency of the sinusoidal grating. However, it is more difficult to prepare the cold atomic system than to prepare the thermal atomic system in the practical application, so the study of the electromagnetically induced grating effect in the thermal atomic system may be helpful for practical applications.
基金Project(50101002) supported by the National Natural Science Foundation of China
文摘An established model was presented as a new kind of means for investigating flow induced corrosion. In this method the near-wall hydrodynamic parameters including wall shear stress τ and mass transfer coefficient k near the wall of materials can be numerically calculated, and combining corrosive kinetics tested by experiments, the corrosion rates can be also calculated accurately. The flow induced corrosion mechanism was further verified by numerical results in this model, and the various corrosion phenomena were explained. The modelled results also show that the ability to accurately utilize numerical method to study flow induced corrosion strongly to some extent depends on material corrosive kinetics processes tested by experiments.
基金the National Natural Science Foundation of China (Grant No. 62061028)the Opening Project of Shanghai Key Laboratory of Special Artificial Microstructure Materials and Technology (Grant No. ammt2021A4)+4 种基金the Foundation for Distinguished Young Scientists of Jiangxi Province (Grant No. 20162BCB23009)the Open Research Fund Program of the State Key Laboratory of LowDimensional Quantum Physics (Grant No. KF202010)the Interdisciplinary Innovation Fund of Nanchang University (Grant No. 9166-27060003-YB12)the Open Research Fund Program of Key Laboratory of Opto-Electronic Information Acquisition and Manipulation of Ministry of Education (Grant No. OEIAM202004)the Graduate Innovation Special Fund of Jiangxi Province (Grant No. YC2021-S054)。
文摘We theoretically explore the tunability of magnomechanically induced transparency(MMIT) phenomenon and fastslow light effect in a hybrid cavity magnomechanical system in which a high-quality yttrium iron garnet(YIG) sphere and an atomic ensemble are placed inside a microwave cavity. In the probe output spectrum, we can observe magnoninduced transparency(MIT) and MMIT due to the photon-magnon and phonon-magnon couplings. We further investigate the effect of atomic ensemble on the absorption spectrum. The results show that better transparency can be obtained by choosing appropriate atomic ensemble parameters. We give an explicit explanation for the mechanism of the Fano resonance phenomenon. Moreover, we discuss phenomena of slow-light propagation. The maximum group delay increases significantly with the increasing atom–cavity coupling strength, and the conversion between slow light and fast light can also be achieved by adjusting the atom–cavity coupling strength. These results may have potential applications for quantum information processing and high precision measurements.
基金supported by the National Natural Science Foundation of China(Grant No.61378094)
文摘We study a three-mode double-cavity optomechanical system in which an oscillating membrane of perfect reflection is inserted between two fixed mirrors of partial transmission. We find that electromagnetically induced transparency (EIT) can be realized and controlled in this optomechanical system by adjusting the relative intensity and the relative phase between left-hand and right-hand input (probe and coupling) fields. In particular, one perfect EIT window is seen to occur when the two probe fields are exactly out of phase and the EIT window's width is very sensitive to the relative intensity of two coupling fields. Our numerical findings may be extended to achieve optomechanical storage and switching schemes applicable in quantum information processing.
基金Project supported by the National Natural Science Foundation of China(Grant No.62061028)the Foundation for Distinguished Young Scientists of Jiangxi Province,China(Grant No.20162BCB23009)+2 种基金the Open Research Fund Program of the State Key Laboratory of Low-Dimensional Quantum Physics(Grant No.KF202010)the Interdisciplinary Innovation Fund of Nanchang University(Grant No.9166-27060003-YB12)the Open Research Fund Program of the Key Laboratory of Opto-Electronic Information Acquisition and Manipulation of Ministry of Education(Grant No.OEIAM202004).
文摘We theoretically explore the tunability of optomechanically induced transparency(OMIT)phenomenon and fast-slow light effect in a loop-coupled hybrid optomechanical system in which two optical modes are coupled to a common mechanical mode.In the probe output spectrum,we find that the interference phenomena OMIT caused by the optomechanical interactions and the normal mode splitting(NMS)induced by the strong tunnel coupling between the cavities can be observed.We further observe that the tunnel interaction will affect the distance and the heights of the sideband absorption peaks.The results also show that the switch from absorption to amplification can be realized by tuning the driving strength because of the existence of stability condition.Except from modulating the tunnel interaction,the conversion between slow light and fast light also can be achieved by adjusting the optomechanical interaction in the output field.This study may provide a potential application in the fields of high precision measurement and quantum information processing.