The use of rare earth for inducing plant resistance was reviewed. The important developments in recent years were described, and rare earth can alleviate the pollution of acid rain, ozone, pesticide, heavy metals etc....The use of rare earth for inducing plant resistance was reviewed. The important developments in recent years were described, and rare earth can alleviate the pollution of acid rain, ozone, pesticide, heavy metals etc. in environment. The authors suggest that the mechanism of rare earth to inducing plant resistance and reducing plant injury is to control biochemical metabolism web in plant cell, to adjust its protection system of free radical, to maintain its photosynthesis, to protect cell membrane system and to carry through its function on mineral metabolism. Meanwhile some problems in the field were discussed as well.展开更多
Small RNAs play an important role in plant immune responses. However, their regulatory function in induced systemic resistance(ISR) is nascent. Bacillus cereus AR156 is a plant growth-promoting rhizobacterium that i...Small RNAs play an important role in plant immune responses. However, their regulatory function in induced systemic resistance(ISR) is nascent. Bacillus cereus AR156 is a plant growth-promoting rhizobacterium that induces ISR in Arabidopsis against bacterial infection. Here,by comparing small RNA profiles of Pseudomonas syringae pv. tomato(Pst) DC3000-infected Arabidopsis with and without AR156 pretreatment, we identified a group of Arabidopsis micro RNAs(mi RNAs) that are differentially regulated by AR156 pretreatment. mi R825 and mi R825 are two mi RNA generated from a single mi RNA gene.Northern blot analysis indicated that they were significantly downregulated in Pst DC3000-infected plants pretreated with AR156, in contrast to the plants without AR156 pretreatment. mi R825 targets two ubiquitin-protein ligases,while mi R825 targets toll-interleukin-like receptor(TIR)-nucleotide binding site(NBS) and leucine-rich repeat(LRR)type resistance(R) genes. The expression of these target genes negatively correlated with the expression of mi R825 and mi R825. Moreover, transgenic plants showing reduced expression of mi R825 and mi R825 displayed enhanced resistance to Pst DC3000 infection, whereas transgenic plants overexpressing mi R825 and mi R825 were more susceptible. Taken together, our data indicates that Bacillus cereus AR156 pretreatment primes ISR to Pst infection by suppressing mi R825 and mi R825 and activating the defense related genes they targeted.展开更多
基金Project supported by the National Natural Science Foundation of China ( 20471030 ) the Foundation of State Planning Committee (GFZ040628)
文摘The use of rare earth for inducing plant resistance was reviewed. The important developments in recent years were described, and rare earth can alleviate the pollution of acid rain, ozone, pesticide, heavy metals etc. in environment. The authors suggest that the mechanism of rare earth to inducing plant resistance and reducing plant injury is to control biochemical metabolism web in plant cell, to adjust its protection system of free radical, to maintain its photosynthesis, to protect cell membrane system and to carry through its function on mineral metabolism. Meanwhile some problems in the field were discussed as well.
基金supported by a Joint Research Fund for Overseas,Hong Kong and Macao Scholars(31228018)to HJ and JGNIH grant(R01GM093008)to HJ+5 种基金NIH grant-(R01GM100364)a grant from Natural Science Foundation of Jiangsu Province of China(BK20141360)a PhD Programs Foundation of Ministry of Education of China(B0201300664)to HZan National Science Foundation grant(DBI-0743797)to WZa Talent Development Program of Wuhan,the municipal government of Wuhan,Hubei,China(2014070504020241)an internal research grant of Jianghan University,Wuhan,China to WZ
文摘Small RNAs play an important role in plant immune responses. However, their regulatory function in induced systemic resistance(ISR) is nascent. Bacillus cereus AR156 is a plant growth-promoting rhizobacterium that induces ISR in Arabidopsis against bacterial infection. Here,by comparing small RNA profiles of Pseudomonas syringae pv. tomato(Pst) DC3000-infected Arabidopsis with and without AR156 pretreatment, we identified a group of Arabidopsis micro RNAs(mi RNAs) that are differentially regulated by AR156 pretreatment. mi R825 and mi R825 are two mi RNA generated from a single mi RNA gene.Northern blot analysis indicated that they were significantly downregulated in Pst DC3000-infected plants pretreated with AR156, in contrast to the plants without AR156 pretreatment. mi R825 targets two ubiquitin-protein ligases,while mi R825 targets toll-interleukin-like receptor(TIR)-nucleotide binding site(NBS) and leucine-rich repeat(LRR)type resistance(R) genes. The expression of these target genes negatively correlated with the expression of mi R825 and mi R825. Moreover, transgenic plants showing reduced expression of mi R825 and mi R825 displayed enhanced resistance to Pst DC3000 infection, whereas transgenic plants overexpressing mi R825 and mi R825 were more susceptible. Taken together, our data indicates that Bacillus cereus AR156 pretreatment primes ISR to Pst infection by suppressing mi R825 and mi R825 and activating the defense related genes they targeted.