Cemented tailings backfill(CTB)not only boosts mining safety and cuts surface environmental pollution but also recovers ores previously retained as pillars,thereby improving resource utilization.The use of alternative...Cemented tailings backfill(CTB)not only boosts mining safety and cuts surface environmental pollution but also recovers ores previously retained as pillars,thereby improving resource utilization.The use of alternative reinforcing products,such as steel fiber(SF),has continuously strengthened CTB into SFCTB.This approach prevents strength decreases over time and reinforces its long-term durability,especially when mining ore in adjacent underground stopes.In this study,various microstructure and strength tests were performed on SFCTB,considering steel fiber ratio and electromagnetic induction strength effects.Lab findings show that combining steel fibers and their distribution dominantly influences the improvement of the fill’s strength.Fill’s strength rises by fiber insertion and has an evident correlation with fiber insertion and magnetic induction strength.When magnetic induction strength is 3×10^(-4) T,peak uniaxial compressive stress reaches 5.73 MPa for a fiber ratio of 2.0vol%.The cracks’expansion mainly started from the specimen’s upper part,which steadily expanded downward by increasing the load until damage occurred.The doping of steel fiber and its directional distribution delayed crack development.When the doping of steel fiber was 2.0vol%,SFCTBs showed excellent ductility characteristics.The energy required for fills to reach destruction increases when steel-fiber insertion and magnetic induction strength increase.This study provides notional references for steel fibers as underground filling additives to enhance the fill’s durability in the course of mining operations.展开更多
As the core component of energy conversion for large wind turbines,the output performance of doubly-fed induction generators (DFIGs) plays a decisive role in the power quality of wind turbines.To realize the fast and ...As the core component of energy conversion for large wind turbines,the output performance of doubly-fed induction generators (DFIGs) plays a decisive role in the power quality of wind turbines.To realize the fast and accurate design optimization of DFIGs,this paper proposes a novel hybriddriven surrogate-assisted optimization method.It firstly establishes an accurate subdomain model of DFIGs to analytically predict performance indexes.Furthermore,taking the inexpensive analytical dataset produced by the subdomain model as the source domain and the expensive finite element analysis dataset as the target domain,a high-precision surrogate model is trained in a transfer learning way and used for the subsequent multi-objective optimization process.Based on this model,taking the total harmonic distortion of electromotive force,cogging torque,and iron loss as objectives,and the slot and inner/outer diameters as parameters for optimizing the topology,achieve a rapid and accurate electromagnetic design for DFIGs.Finally,experiments are carried out on a 3MW DFIG to validate the effectiveness of the proposed method.展开更多
Enhancing plasma uniformity can be achieved by modifying coil and chamber structures in radio frequency inductively coupled plasma(ICP)to meet the demand for large-area and uniformly distributed plasma in industrial m...Enhancing plasma uniformity can be achieved by modifying coil and chamber structures in radio frequency inductively coupled plasma(ICP)to meet the demand for large-area and uniformly distributed plasma in industrial manufacturing.This study utilized a two-dimensional self-consistent fluid model to investigate how different coil configurations and chamber aspect ratios affect the radial uniformity of plasma in radio frequency ICP.The findings indicate that optimizing the radial spacing of the coil enhances plasma uniformity but with a reduction in electron density.Furthermore,optimizing the coil within the ICP reactor,using the interior point method in the Interior Point Optimizer significantly enhances plasma uniformity,elevating it from 56%to 96%within the range of the model sizes.Additionally,when the chamber aspect ratio k changes from 2.8 to 4.7,the plasma distribution changes from a center-high to a saddleshaped distribution.Moreover,the plasma uniformity becomes worse.Finally,adjusting process parameters,such as increasing source power and gas pressure,can enhance plasma uniformity.These findings contribute to optimizing the etching process by improving plasma radial uniformity.展开更多
Increasing attention has been paid to the efficiency improvement of the induction traction system of high-speed trains due to the high demand for energy saving. In emergency self-propelled mode, however, the dc-link v...Increasing attention has been paid to the efficiency improvement of the induction traction system of high-speed trains due to the high demand for energy saving. In emergency self-propelled mode, however, the dc-link voltage and the traction power of the motor are significantly reduced, resulting in decreased traction efficiency due to the low load and low speed operations. Aiming to tackle this problem, a novel efficiency improved control method is introduced to the emergency mode of high-speed train traction system in this paper. In the proposed method, a total loss model of induction motor considering the behaviors of both iron and copper loss is established. An improved iterative algorithm with decreased computational burden is then introduced, resulting in a fast solving of the optimal flux reference for loss minimization at each control period. In addition, considering the parameter variation problem due to the low load and low speed operations, a parameter estimation method is integrated to improve the controller's robustness. The effectiveness of the proposed method on efficiency improvement at low voltage and low load conditions is demonstrated by simulated and experimental results.展开更多
In this paper,a stable and adaptive sliding mode control(SMC)method for induction motors is introduced.Determining the parameters of this system has been one of the existing challenges.To solve this challenge,a new se...In this paper,a stable and adaptive sliding mode control(SMC)method for induction motors is introduced.Determining the parameters of this system has been one of the existing challenges.To solve this challenge,a new self-tuning type-2 fuzzy neural network calculates and updates the control system parameters with a fast mechanism.According to the dynamic changes of the system,in addition to the parameters of the SMC,the parameters of the type-2 fuzzy neural network are also updated online.The conditions for guaranteeing the convergence and stability of the control system are provided.In the simulation part,in order to test the proposed method,several uncertain models and load torque have been applied.Also,the results have been compared to the SMC based on the type-1 fuzzy system,the traditional SMC,and the PI controller.The average RMSE in different scenarios,for type-2 fuzzy SMC,is 0.0311,for type-1 fuzzy SMC is 0.0497,for traditional SMC is 0.0778,and finally for PI controller is 0.0997.展开更多
Magnetohydrodynamic(MHD)induction pumps are contactless pumps able to withstand harsh environments.The rate of fluid flow through the pump directly affects the efficiency and stability of the device.To explore the inf...Magnetohydrodynamic(MHD)induction pumps are contactless pumps able to withstand harsh environments.The rate of fluid flow through the pump directly affects the efficiency and stability of the device.To explore the influence of induction pump settings on the related delivery speed,in this study,a numerical model for coupled electromagnetic and flow field effects is introduced and used to simulate liquid metal lithium flow in the induction pump.The effects of current intensity,frequency,coil turns and coil winding size on the velocity of the working fluid are analyzed.It is shown that the first three parameters have a significant impact,while changes in the coil turns have a negligible influence.The maximum increase in working fluid velocity within the pump for the parameter combination investigated in this paper is approximately 618%.As the frequency is increased from 20 to 60 Hz,the maximum increase in the mean flow rate of the working fluid is approximately 241%.These research findings are intended to support the design and optimization of these devices.展开更多
The synchronous monitoring of cerebral blood flow and blood oxygen levels plays a pivotal role in the prevention,diagnosis,and treatment of cerebrovascular diseases.This study introduces a novel noninvasive device uti...The synchronous monitoring of cerebral blood flow and blood oxygen levels plays a pivotal role in the prevention,diagnosis,and treatment of cerebrovascular diseases.This study introduces a novel noninvasive device utilizing inductive sensing and near-infrared spectroscopy technology to facilitate simultaneous monitoring of cerebral blood flow and blood oxygen levels.The device consists of modules for cerebral blood flow monitoring,cerebral blood oxygen monitoring,control,communication,and a host machine.Through experiments conducted on healthy subjects,it was confirmed that the device can effectively achieve synchronous monitoring and recording of cerebral blood flow and blood oxygen signals.The results demonstrate the device’s capability to accurately measure these signals simultaneously.This technology enables dynamic monitoring of cerebral blood flow and blood oxygen signals with potential clinical applications in preventing,diagnosing,treating cerebrovascular diseases while reducing their associated harm.展开更多
Objective: The objective of this study was to determine if early rupture of membranes (ROM) in women undergoing induction of labor (IOL) at term is associated with an increased rate of clinical chorioamnionitis. Study...Objective: The objective of this study was to determine if early rupture of membranes (ROM) in women undergoing induction of labor (IOL) at term is associated with an increased rate of clinical chorioamnionitis. Study Design: A retrospective cohort study was performed on women undergoing IOL. Early ROM was defined as ROM at a modified Bishop score less than 5, cervical dilation less than 4 cm, or cervical effacement less than 80%. The rate of clinical chorioamnionitis was compared between women with early and late ROM. Results: The rate of clinical chorioamnionitis was 8.6% (24/279). ROM at an effacement of less than 80% was associated with a rate of clinical chorioamnionitis of 15.4% (12/78) compared to 6.0% (12/201) at an effacement of equal to or greater than 80%, p = 0.017. The rate of cesarean delivery was higher for patients with early ROM by any definition: 32% compared to 17.5% by modified Bishop score (p = 0.031), 32.4% versus 18.2% by cervical dilation (p = 0.049), and 33.3% versus 14.9% by cervical effacement (p = 0.001). Conclusions: In patients undergoing IOL, early ROM may be associated with an increased rate of clinical chorioamnionitis when performed at a cervical effacement of less than 80% and an increased rate of cesarean delivery.展开更多
The harmonics that appear in the squirrel cage asynchronous machine have been discussed in great detail in the literature for a long time. However, the systematization of the phenomenon is still pending, so we made an...The harmonics that appear in the squirrel cage asynchronous machine have been discussed in great detail in the literature for a long time. However, the systematization of the phenomenon is still pending, so we made an attempt to fill this gap in the previous parts of our study by elaborating formulas for calculation of parasitic torques. It was a general demand among those who work in this field towards the author to verify his formulas with measurements. In the literature, it seems,only one detailed, purposeful series of measurements has been published so far, the purpose of which was to investigate the effect of the number of rotor slots on the torque-speed characteristic curve of the machine. The main goal of this study is to verify the correctness of the formulas by comparing them with the referred series of measurements. Relying on this, the expected synchronous parasitic torques were developed for the frequently used rotor slot numbers-as a design guide for the engineer.Thus, together with our complete table for radial magnetic pull published in our previous work, the designer has all the principles, data and formulas available for the right number of rotor slots for his given machine and for the drive system. This brings this series of papers to an end.展开更多
In the context of induction motor control, there are various control strategies used to separately control torque and flux. One common approach is known as Field-Oriented Control (FOC). This technique involves transfo...In the context of induction motor control, there are various control strategies used to separately control torque and flux. One common approach is known as Field-Oriented Control (FOC). This technique involves transforming the three-phase currents and voltages into a rotating reference frame, commonly referred to as the “dq” frame. In this frame, the torque/speed and flux components are decoupled, allowing for independent control, by doing so, the motor’s speed can be regulated accurately and maintain a constant flux which is crucial to ensure optimal motor performance and efficiency. The research focused on studying and simulating a field-oriented control system using fuzzy control techniques for an induction motor. The aim was to address the issue of parameter variations, particularly the change in rotor resistance during motor operation, which causes the control system to deviate from the desired direction. This deviation implies to an increase in the magnetic flux value, specifically the flux component on the q-axis. By employing fuzzy logic techniques to regulate flux vector’s components in the dq frame, this problem was successfully resolved, ensuring that the magnetic flux value remains within the nominal limits. To enhance the control system’s performance, response speed, and efficiency of the motor, sliding mode controllers were implemented to regulate the current in the inner loop. The simulation results demonstrated the proficiency of the proposed methodology.展开更多
The present paper is finalized to show that the Science, even if considered in its two different Phenomenological Approaches at present known, is unable to assert that: “Thinks are like that”. This is because both t...The present paper is finalized to show that the Science, even if considered in its two different Phenomenological Approaches at present known, is unable to assert that: “Thinks are like that”. This is because both the two Scientific Approaches previously mentioned have not the property of “the perfect induction”. Consequently, although they can even reach an experimental confirmation of the theoretical results, and thus a “valid description” of the various phenomena of the surrounding world, such a description has not an “absolute value”. In fact, it always and only has an “operative validity”, that is, it exclusively and solely refers to an “experimental point of view”. This means that such an “operative validity” cannot represent the basis for a logical process characterized by a “perfect induction”. In addition, the Traditional Scientific Approach is also characterized by “Insoluble” Problems, “Intractable Problems”, Problems with “drifts”, which could generally be termed as “side effects”. On the other hand, the same com-possible Scientific Approach based on the Emerging Quality of Self-Organizing Systems, also presents its “Emerging Exits”. Consequently, none of the two mentioned scientific Approaches has the “gift” of “the perfect induction”. However, there are significant differences between the two. Differences that may “suggest” the most appropriate choice among them for an “operative point of view”. This conclusion will be com-proved by considering, with particular reference, both the “side effects”, which are related to the Traditional Approach and, on the other hand, the “Emerging Exits”, which specifically pertain to the new Scientific Approach based on the Emerging Quality of Self-Organizing Systems.展开更多
Small multi-turn coil devices are used with the transient electromagnetic method (TEM) in areas with limited space, particularly in underground environments such as coal mines roadways and engineering tunnels, and f...Small multi-turn coil devices are used with the transient electromagnetic method (TEM) in areas with limited space, particularly in underground environments such as coal mines roadways and engineering tunnels, and for detecting shallow geological targets in environmental and engineering fields. However, the equipment involved has strong mutual inductance coupling, which causes a lengthy turn-off time and a deep “blind zone”. This study proposes a new transmitter device with a conical-shape source and derives the radius formula of each coil and the mutual inductance coefficient of the cone. According to primary field characteristics, results of the two fields created, calculation of the conical-shaped source in a uniform medium using theoretical analysis, and a comparison of the inductance of the new device with that of the multi-turn coil, show that inductance of the multi-turn coil is nine times greater than that of the conical source with the same equivalent magnetic moment of 926.1 A·m2. This indicates that the new source leads to a much shallower “blind zone.” Furthermore, increasing the bottom radius and turn of the cone creates a larger mutual inductance but increasing the cone height results in a lower mutual inductance. Using the superposition principle, the primary and secondary magnetic fields for a conical source in a homogeneous medium are calculated; results indicate that the magnetic behavior of the cone is the same as that of the multi-turn coils, but the transient responses of the secondary field and the total field are more stronger than those of the multi-turn coils. To study the transient response characteristics using a cone-shaped source in a layered earth, a numerical filtering algorithm is then developed using the fast Hankel transform and the improved cosine transform, again using the superposition principle. During development, an average apparent resistivity inverted from the induced electromotive force using each coil is defined to represent the comprehensive resistivity of the conical source. To verify the forward calculation method, the transient responses of H type models and KH type models are calculated, and data are inverted using a “smoke ring” inversion. The results of inversion have good agreement with original models and show that the forward calculation method is effective. The results of this study provide an option for solving the problem of a deep “blind zone” and also provide a theoretical indicator for further research.展开更多
We study the quantization of mesoscopic inductance coupling circuit and discuss its time evolution. Bymeans of the thermal field dynamics theory we study the quantum fluctuation of the system at finite temperature.
We study the quantum fluctuations of the charge and current of two L-C dissipative mesoscopic circuit with the mutual inductance in the vacuum state.Our results show that the system state will evolve to a squeezed coh...We study the quantum fluctuations of the charge and current of two L-C dissipative mesoscopic circuit with the mutual inductance in the vacuum state.Our results show that the system state will evolve to a squeezed coherent state under the effect of external source.We find that the squeezing amplitude parameter is relative to the parameters of circuit and the mutual-inductance coefficient in the existence of dissipation.When the circuit has no dissipation or there is complete coupling between two meshes,the squeezing amplitude parameter only depends on the capacitance's ratio.展开更多
New electronically-controllable lossless grounded and floating inductance simulation circuits have been proposed employing Voltage Differencing Transconductance Amplifiers (VDTA). The proposed grounded inductance (GI)...New electronically-controllable lossless grounded and floating inductance simulation circuits have been proposed employing Voltage Differencing Transconductance Amplifiers (VDTA). The proposed grounded inductance (GI) circuit employs a single VDTA and one grounded capacitor whereas the floating inductance (FI) circuit employs two VDTAs and one grounded capacitor. The workability of the new circuits has been verified using SPICE simulation with TSMC CMOS 0.18 μm process parameters.展开更多
New Voltage Differencing Differential Input Buffered Amplifier (VD-DIBA) based lossless grounded and floating inductance simulation circuits have been proposed. The proposed grounded simulated inductance circuit emplo...New Voltage Differencing Differential Input Buffered Amplifier (VD-DIBA) based lossless grounded and floating inductance simulation circuits have been proposed. The proposed grounded simulated inductance circuit employs a single VD-DIBA, one floating resistance and one grounded capacitor. The floating simulated inductance (FI) circuits employ two VD-DIBAs with two passive components (one floating resistance and one grounded capacitor). The circuit for grounded inductance does not require any realization conditions where as in case of floating inductance circuits, a single matching condition is needed. Simulation results demonstrating the applications of the new simulated inductors using CMOS VD-DIBAs have been included to confirm the workability of the new circuits.展开更多
Low-frequency double-resonance quartz crystal oscillator was developed with active inductance circuit aiming the start-up of stable oscillation of tuning fork-type quartz crystal resonator at 32.768 kHz within 0.37 ms...Low-frequency double-resonance quartz crystal oscillator was developed with active inductance circuit aiming the start-up of stable oscillation of tuning fork-type quartz crystal resonator at 32.768 kHz within 0.37 ms. The initial oscillation is triggered by a part of crystal oscillator forming a CR oscillator. The negative resistance ranges to 4 MΩ at gmf of 4.1 μA/V. In a limited frequency range, the circuit shows negative reactance Ccci = -3.4 pF equivalent to inductance Lcc = 9.8 H. The Allan standard deviation indicated 10-11 to 10-10, showing high stability comparable to general quartz crystal oscillator.展开更多
This paper deals with an analytical method to effectively calculate the inductance of an exterior-rotor switched reluctance motor(SRM),which evaluates the winding inductance of both the active section and the end sect...This paper deals with an analytical method to effectively calculate the inductance of an exterior-rotor switched reluctance motor(SRM),which evaluates the winding inductance of both the active section and the end section,accounting for the influence of core saturation.According to the inductance calculated by the analytical model,the flux linkage table and torque table can be established,and the steady state performance such as phase current,flux linkage,copper loss and core loss can be predicted.Effectiveness of this method is verified by the finite element method as well as by experimental results of a 12/8 SRM prototype.展开更多
Magnetorheological(MR)materials are a class of smart material,whose the mechanical/rheological state can be controlled under a magnetic field.Magnetorheological materials are typically fluids,gels,or elastomers.In thi...Magnetorheological(MR)materials are a class of smart material,whose the mechanical/rheological state can be controlled under a magnetic field.Magnetorheological materials are typically fluids,gels,or elastomers.In this study,anisotropic and isotropic magneto-rheological elastomer(MRE)samples were fabricated using a silicone rubber matrix with carbonyl iron particles as filler particles.The magnetic field-dependent inductance properties of these samples were studied using inductors specially designed for the analysis.The effect of the filler particle content,fabrication conditions,and inductance properties were characterized using a self-built system in both constant and transient magnetic fields.These factors show a significant effect on the inductance properties of the MRE inductor under an applied magnetic field.The anisotropic MRE inductor was more sensitive than the inductor based on an isotropic MRE.Owing to the presence of a constant magnetic field,the inductance value of the MRE inductor decreased with an increase in the external magnetic field.An attempt in elucidation of the mechanism is reported here.This study may enable the MRE to be widely used in practical applications such as monitoring magnetic field or detecting the filler particle content inside MR materials.展开更多
A configuration using current feedback amplifiers AD844 and multiplier AD534 has been presented, which is capable of realizing Voltage Controlled Floating Inductance (proportional and in-verse proportional). The appli...A configuration using current feedback amplifiers AD844 and multiplier AD534 has been presented, which is capable of realizing Voltage Controlled Floating Inductance (proportional and in-verse proportional). The application of band pass filter in Figure 4(a), notch filter in Figure 5(a) and Hartley oscillator in Figure 6(a) and simulation result in Figures 4(b)-(d), Figures 5(b)-(d), Figures 6(b)-(d) shows the workability of proposed configuration.展开更多
基金financially supported by the China’s National Key Research and Development Program(No.2022YFC2905004)the China Postdoctoral Science Foundation(No.2023M742134).
文摘Cemented tailings backfill(CTB)not only boosts mining safety and cuts surface environmental pollution but also recovers ores previously retained as pillars,thereby improving resource utilization.The use of alternative reinforcing products,such as steel fiber(SF),has continuously strengthened CTB into SFCTB.This approach prevents strength decreases over time and reinforces its long-term durability,especially when mining ore in adjacent underground stopes.In this study,various microstructure and strength tests were performed on SFCTB,considering steel fiber ratio and electromagnetic induction strength effects.Lab findings show that combining steel fibers and their distribution dominantly influences the improvement of the fill’s strength.Fill’s strength rises by fiber insertion and has an evident correlation with fiber insertion and magnetic induction strength.When magnetic induction strength is 3×10^(-4) T,peak uniaxial compressive stress reaches 5.73 MPa for a fiber ratio of 2.0vol%.The cracks’expansion mainly started from the specimen’s upper part,which steadily expanded downward by increasing the load until damage occurred.The doping of steel fiber and its directional distribution delayed crack development.When the doping of steel fiber was 2.0vol%,SFCTBs showed excellent ductility characteristics.The energy required for fills to reach destruction increases when steel-fiber insertion and magnetic induction strength increase.This study provides notional references for steel fibers as underground filling additives to enhance the fill’s durability in the course of mining operations.
文摘As the core component of energy conversion for large wind turbines,the output performance of doubly-fed induction generators (DFIGs) plays a decisive role in the power quality of wind turbines.To realize the fast and accurate design optimization of DFIGs,this paper proposes a novel hybriddriven surrogate-assisted optimization method.It firstly establishes an accurate subdomain model of DFIGs to analytically predict performance indexes.Furthermore,taking the inexpensive analytical dataset produced by the subdomain model as the source domain and the expensive finite element analysis dataset as the target domain,a high-precision surrogate model is trained in a transfer learning way and used for the subsequent multi-objective optimization process.Based on this model,taking the total harmonic distortion of electromotive force,cogging torque,and iron loss as objectives,and the slot and inner/outer diameters as parameters for optimizing the topology,achieve a rapid and accurate electromagnetic design for DFIGs.Finally,experiments are carried out on a 3MW DFIG to validate the effectiveness of the proposed method.
基金supported by the Scientific Research Foundation of Xijing University,China(No.XJ19T03)the Opening Project of Science and Technology on Reliability Physics and Application Technology of Electronic Component Laboratory(No.ZHD201701)the Natural Science Basic Research Plan in Shaanxi Province of China(No.2024JC-YBMS-342).
文摘Enhancing plasma uniformity can be achieved by modifying coil and chamber structures in radio frequency inductively coupled plasma(ICP)to meet the demand for large-area and uniformly distributed plasma in industrial manufacturing.This study utilized a two-dimensional self-consistent fluid model to investigate how different coil configurations and chamber aspect ratios affect the radial uniformity of plasma in radio frequency ICP.The findings indicate that optimizing the radial spacing of the coil enhances plasma uniformity but with a reduction in electron density.Furthermore,optimizing the coil within the ICP reactor,using the interior point method in the Interior Point Optimizer significantly enhances plasma uniformity,elevating it from 56%to 96%within the range of the model sizes.Additionally,when the chamber aspect ratio k changes from 2.8 to 4.7,the plasma distribution changes from a center-high to a saddleshaped distribution.Moreover,the plasma uniformity becomes worse.Finally,adjusting process parameters,such as increasing source power and gas pressure,can enhance plasma uniformity.These findings contribute to optimizing the etching process by improving plasma radial uniformity.
基金supported in part by the Science Foundation of the Chinese Academy of Railway Sciences under Grant Number:2023QT001。
文摘Increasing attention has been paid to the efficiency improvement of the induction traction system of high-speed trains due to the high demand for energy saving. In emergency self-propelled mode, however, the dc-link voltage and the traction power of the motor are significantly reduced, resulting in decreased traction efficiency due to the low load and low speed operations. Aiming to tackle this problem, a novel efficiency improved control method is introduced to the emergency mode of high-speed train traction system in this paper. In the proposed method, a total loss model of induction motor considering the behaviors of both iron and copper loss is established. An improved iterative algorithm with decreased computational burden is then introduced, resulting in a fast solving of the optimal flux reference for loss minimization at each control period. In addition, considering the parameter variation problem due to the low load and low speed operations, a parameter estimation method is integrated to improve the controller's robustness. The effectiveness of the proposed method on efficiency improvement at low voltage and low load conditions is demonstrated by simulated and experimental results.
基金This research is financially supported by the Ministry of Science and Technology of China(Grant No.2019YFE0112400)the Department of Science and Technology of Shandong Province(Grant No.2021CXGC011204).
文摘In this paper,a stable and adaptive sliding mode control(SMC)method for induction motors is introduced.Determining the parameters of this system has been one of the existing challenges.To solve this challenge,a new self-tuning type-2 fuzzy neural network calculates and updates the control system parameters with a fast mechanism.According to the dynamic changes of the system,in addition to the parameters of the SMC,the parameters of the type-2 fuzzy neural network are also updated online.The conditions for guaranteeing the convergence and stability of the control system are provided.In the simulation part,in order to test the proposed method,several uncertain models and load torque have been applied.Also,the results have been compared to the SMC based on the type-1 fuzzy system,the traditional SMC,and the PI controller.The average RMSE in different scenarios,for type-2 fuzzy SMC,is 0.0311,for type-1 fuzzy SMC is 0.0497,for traditional SMC is 0.0778,and finally for PI controller is 0.0997.
文摘Magnetohydrodynamic(MHD)induction pumps are contactless pumps able to withstand harsh environments.The rate of fluid flow through the pump directly affects the efficiency and stability of the device.To explore the influence of induction pump settings on the related delivery speed,in this study,a numerical model for coupled electromagnetic and flow field effects is introduced and used to simulate liquid metal lithium flow in the induction pump.The effects of current intensity,frequency,coil turns and coil winding size on the velocity of the working fluid are analyzed.It is shown that the first three parameters have a significant impact,while changes in the coil turns have a negligible influence.The maximum increase in working fluid velocity within the pump for the parameter combination investigated in this paper is approximately 618%.As the frequency is increased from 20 to 60 Hz,the maximum increase in the mean flow rate of the working fluid is approximately 241%.These research findings are intended to support the design and optimization of these devices.
基金National Natural Science Foundation of China(No.51977214)Science and Technology Research Project of Chongqing Education Commission(No.KJQN202212805)Special funding project of Army Medical University(No.2021XJS08)。
文摘The synchronous monitoring of cerebral blood flow and blood oxygen levels plays a pivotal role in the prevention,diagnosis,and treatment of cerebrovascular diseases.This study introduces a novel noninvasive device utilizing inductive sensing and near-infrared spectroscopy technology to facilitate simultaneous monitoring of cerebral blood flow and blood oxygen levels.The device consists of modules for cerebral blood flow monitoring,cerebral blood oxygen monitoring,control,communication,and a host machine.Through experiments conducted on healthy subjects,it was confirmed that the device can effectively achieve synchronous monitoring and recording of cerebral blood flow and blood oxygen signals.The results demonstrate the device’s capability to accurately measure these signals simultaneously.This technology enables dynamic monitoring of cerebral blood flow and blood oxygen signals with potential clinical applications in preventing,diagnosing,treating cerebrovascular diseases while reducing their associated harm.
文摘Objective: The objective of this study was to determine if early rupture of membranes (ROM) in women undergoing induction of labor (IOL) at term is associated with an increased rate of clinical chorioamnionitis. Study Design: A retrospective cohort study was performed on women undergoing IOL. Early ROM was defined as ROM at a modified Bishop score less than 5, cervical dilation less than 4 cm, or cervical effacement less than 80%. The rate of clinical chorioamnionitis was compared between women with early and late ROM. Results: The rate of clinical chorioamnionitis was 8.6% (24/279). ROM at an effacement of less than 80% was associated with a rate of clinical chorioamnionitis of 15.4% (12/78) compared to 6.0% (12/201) at an effacement of equal to or greater than 80%, p = 0.017. The rate of cesarean delivery was higher for patients with early ROM by any definition: 32% compared to 17.5% by modified Bishop score (p = 0.031), 32.4% versus 18.2% by cervical dilation (p = 0.049), and 33.3% versus 14.9% by cervical effacement (p = 0.001). Conclusions: In patients undergoing IOL, early ROM may be associated with an increased rate of clinical chorioamnionitis when performed at a cervical effacement of less than 80% and an increased rate of cesarean delivery.
文摘The harmonics that appear in the squirrel cage asynchronous machine have been discussed in great detail in the literature for a long time. However, the systematization of the phenomenon is still pending, so we made an attempt to fill this gap in the previous parts of our study by elaborating formulas for calculation of parasitic torques. It was a general demand among those who work in this field towards the author to verify his formulas with measurements. In the literature, it seems,only one detailed, purposeful series of measurements has been published so far, the purpose of which was to investigate the effect of the number of rotor slots on the torque-speed characteristic curve of the machine. The main goal of this study is to verify the correctness of the formulas by comparing them with the referred series of measurements. Relying on this, the expected synchronous parasitic torques were developed for the frequently used rotor slot numbers-as a design guide for the engineer.Thus, together with our complete table for radial magnetic pull published in our previous work, the designer has all the principles, data and formulas available for the right number of rotor slots for his given machine and for the drive system. This brings this series of papers to an end.
文摘In the context of induction motor control, there are various control strategies used to separately control torque and flux. One common approach is known as Field-Oriented Control (FOC). This technique involves transforming the three-phase currents and voltages into a rotating reference frame, commonly referred to as the “dq” frame. In this frame, the torque/speed and flux components are decoupled, allowing for independent control, by doing so, the motor’s speed can be regulated accurately and maintain a constant flux which is crucial to ensure optimal motor performance and efficiency. The research focused on studying and simulating a field-oriented control system using fuzzy control techniques for an induction motor. The aim was to address the issue of parameter variations, particularly the change in rotor resistance during motor operation, which causes the control system to deviate from the desired direction. This deviation implies to an increase in the magnetic flux value, specifically the flux component on the q-axis. By employing fuzzy logic techniques to regulate flux vector’s components in the dq frame, this problem was successfully resolved, ensuring that the magnetic flux value remains within the nominal limits. To enhance the control system’s performance, response speed, and efficiency of the motor, sliding mode controllers were implemented to regulate the current in the inner loop. The simulation results demonstrated the proficiency of the proposed methodology.
文摘The present paper is finalized to show that the Science, even if considered in its two different Phenomenological Approaches at present known, is unable to assert that: “Thinks are like that”. This is because both the two Scientific Approaches previously mentioned have not the property of “the perfect induction”. Consequently, although they can even reach an experimental confirmation of the theoretical results, and thus a “valid description” of the various phenomena of the surrounding world, such a description has not an “absolute value”. In fact, it always and only has an “operative validity”, that is, it exclusively and solely refers to an “experimental point of view”. This means that such an “operative validity” cannot represent the basis for a logical process characterized by a “perfect induction”. In addition, the Traditional Scientific Approach is also characterized by “Insoluble” Problems, “Intractable Problems”, Problems with “drifts”, which could generally be termed as “side effects”. On the other hand, the same com-possible Scientific Approach based on the Emerging Quality of Self-Organizing Systems, also presents its “Emerging Exits”. Consequently, none of the two mentioned scientific Approaches has the “gift” of “the perfect induction”. However, there are significant differences between the two. Differences that may “suggest” the most appropriate choice among them for an “operative point of view”. This conclusion will be com-proved by considering, with particular reference, both the “side effects”, which are related to the Traditional Approach and, on the other hand, the “Emerging Exits”, which specifically pertain to the new Scientific Approach based on the Emerging Quality of Self-Organizing Systems.
基金supported by the National Natural Science Foundation of China(Nos.41564001 and 41572185)the Natural Science Foundation of Jiangxi Province(No.20151BAB203045)
文摘Small multi-turn coil devices are used with the transient electromagnetic method (TEM) in areas with limited space, particularly in underground environments such as coal mines roadways and engineering tunnels, and for detecting shallow geological targets in environmental and engineering fields. However, the equipment involved has strong mutual inductance coupling, which causes a lengthy turn-off time and a deep “blind zone”. This study proposes a new transmitter device with a conical-shape source and derives the radius formula of each coil and the mutual inductance coefficient of the cone. According to primary field characteristics, results of the two fields created, calculation of the conical-shaped source in a uniform medium using theoretical analysis, and a comparison of the inductance of the new device with that of the multi-turn coil, show that inductance of the multi-turn coil is nine times greater than that of the conical source with the same equivalent magnetic moment of 926.1 A·m2. This indicates that the new source leads to a much shallower “blind zone.” Furthermore, increasing the bottom radius and turn of the cone creates a larger mutual inductance but increasing the cone height results in a lower mutual inductance. Using the superposition principle, the primary and secondary magnetic fields for a conical source in a homogeneous medium are calculated; results indicate that the magnetic behavior of the cone is the same as that of the multi-turn coils, but the transient responses of the secondary field and the total field are more stronger than those of the multi-turn coils. To study the transient response characteristics using a cone-shaped source in a layered earth, a numerical filtering algorithm is then developed using the fast Hankel transform and the improved cosine transform, again using the superposition principle. During development, an average apparent resistivity inverted from the induced electromotive force using each coil is defined to represent the comprehensive resistivity of the conical source. To verify the forward calculation method, the transient responses of H type models and KH type models are calculated, and data are inverted using a “smoke ring” inversion. The results of inversion have good agreement with original models and show that the forward calculation method is effective. The results of this study provide an option for solving the problem of a deep “blind zone” and also provide a theoretical indicator for further research.
文摘We study the quantization of mesoscopic inductance coupling circuit and discuss its time evolution. Bymeans of the thermal field dynamics theory we study the quantum fluctuation of the system at finite temperature.
文摘We study the quantum fluctuations of the charge and current of two L-C dissipative mesoscopic circuit with the mutual inductance in the vacuum state.Our results show that the system state will evolve to a squeezed coherent state under the effect of external source.We find that the squeezing amplitude parameter is relative to the parameters of circuit and the mutual-inductance coefficient in the existence of dissipation.When the circuit has no dissipation or there is complete coupling between two meshes,the squeezing amplitude parameter only depends on the capacitance's ratio.
文摘New electronically-controllable lossless grounded and floating inductance simulation circuits have been proposed employing Voltage Differencing Transconductance Amplifiers (VDTA). The proposed grounded inductance (GI) circuit employs a single VDTA and one grounded capacitor whereas the floating inductance (FI) circuit employs two VDTAs and one grounded capacitor. The workability of the new circuits has been verified using SPICE simulation with TSMC CMOS 0.18 μm process parameters.
文摘New Voltage Differencing Differential Input Buffered Amplifier (VD-DIBA) based lossless grounded and floating inductance simulation circuits have been proposed. The proposed grounded simulated inductance circuit employs a single VD-DIBA, one floating resistance and one grounded capacitor. The floating simulated inductance (FI) circuits employ two VD-DIBAs with two passive components (one floating resistance and one grounded capacitor). The circuit for grounded inductance does not require any realization conditions where as in case of floating inductance circuits, a single matching condition is needed. Simulation results demonstrating the applications of the new simulated inductors using CMOS VD-DIBAs have been included to confirm the workability of the new circuits.
文摘Low-frequency double-resonance quartz crystal oscillator was developed with active inductance circuit aiming the start-up of stable oscillation of tuning fork-type quartz crystal resonator at 32.768 kHz within 0.37 ms. The initial oscillation is triggered by a part of crystal oscillator forming a CR oscillator. The negative resistance ranges to 4 MΩ at gmf of 4.1 μA/V. In a limited frequency range, the circuit shows negative reactance Ccci = -3.4 pF equivalent to inductance Lcc = 9.8 H. The Allan standard deviation indicated 10-11 to 10-10, showing high stability comparable to general quartz crystal oscillator.
文摘This paper deals with an analytical method to effectively calculate the inductance of an exterior-rotor switched reluctance motor(SRM),which evaluates the winding inductance of both the active section and the end section,accounting for the influence of core saturation.According to the inductance calculated by the analytical model,the flux linkage table and torque table can be established,and the steady state performance such as phase current,flux linkage,copper loss and core loss can be predicted.Effectiveness of this method is verified by the finite element method as well as by experimental results of a 12/8 SRM prototype.
基金Project(cstc2019jcyj-msxm X0005)supported by General Program of Chongqing Natural Science Foundation,ChinaProject(51905062)supported by the National Natural Science Foundation of China。
文摘Magnetorheological(MR)materials are a class of smart material,whose the mechanical/rheological state can be controlled under a magnetic field.Magnetorheological materials are typically fluids,gels,or elastomers.In this study,anisotropic and isotropic magneto-rheological elastomer(MRE)samples were fabricated using a silicone rubber matrix with carbonyl iron particles as filler particles.The magnetic field-dependent inductance properties of these samples were studied using inductors specially designed for the analysis.The effect of the filler particle content,fabrication conditions,and inductance properties were characterized using a self-built system in both constant and transient magnetic fields.These factors show a significant effect on the inductance properties of the MRE inductor under an applied magnetic field.The anisotropic MRE inductor was more sensitive than the inductor based on an isotropic MRE.Owing to the presence of a constant magnetic field,the inductance value of the MRE inductor decreased with an increase in the external magnetic field.An attempt in elucidation of the mechanism is reported here.This study may enable the MRE to be widely used in practical applications such as monitoring magnetic field or detecting the filler particle content inside MR materials.
文摘A configuration using current feedback amplifiers AD844 and multiplier AD534 has been presented, which is capable of realizing Voltage Controlled Floating Inductance (proportional and in-verse proportional). The application of band pass filter in Figure 4(a), notch filter in Figure 5(a) and Hartley oscillator in Figure 6(a) and simulation result in Figures 4(b)-(d), Figures 5(b)-(d), Figures 6(b)-(d) shows the workability of proposed configuration.