The inverter-fed induction motor drive system may become unstable at low frequencies and light load, and phase current and speed of the induction motor may oscillate periodically, which will threaten safety and reliab...The inverter-fed induction motor drive system may become unstable at low frequencies and light load, and phase current and speed of the induction motor may oscillate periodically, which will threaten safety and reliability of the system. This paper chooses nine-phase induction motor simulated propulsion system as the research object, small disturbance model of three-phase induction motor is built, and average equivalent model of the converter is built by introducing switch function. On the basis above, small disturbance mathematic model of the whole system is obtained. As for the limitation of parameters adjustment method of restrain low-frequency oscillation, the restrain method combining current close-loop with dead-time compensation is put forward. Finally, the proposed restrain method is verified respectively on the built simulation and experimental analogue platform. And the simulation and experimental results indicate that the proposed method can not only satisfy the requirement of low-frequency oscillation restraining, but also be expanded widely, and the stability of the system can get improved greatly.展开更多
In general, it is important to operate the; airgap length uniformly for improving the system efficiency independent of the flatness of the reaction plate in a railway propulsion system by a linear induction motor (LI...In general, it is important to operate the; airgap length uniformly for improving the system efficiency independent of the flatness of the reaction plate in a railway propulsion system by a linear induction motor (LIM). And it is possible to operate the LIM propulsion system efficiently without a change of the LIM capacity through the airgap length control on the sloped rail. So, in this research, the authors introduce an airgap control system to control the airgap length which depends on the flatness of the secondary reaction plate when the LIM is operated, and design a rotary small-scaled LIM and its airgap control system before manufacturing the real system. Then, the authors analyze some characteristics of the LIM (thrust and normal force, input current, efficiency and power factor), and through the LIM control modeling, the authors finally analyze an effect of the airgap-length control of the LIM by the airgap control system.展开更多
文摘The inverter-fed induction motor drive system may become unstable at low frequencies and light load, and phase current and speed of the induction motor may oscillate periodically, which will threaten safety and reliability of the system. This paper chooses nine-phase induction motor simulated propulsion system as the research object, small disturbance model of three-phase induction motor is built, and average equivalent model of the converter is built by introducing switch function. On the basis above, small disturbance mathematic model of the whole system is obtained. As for the limitation of parameters adjustment method of restrain low-frequency oscillation, the restrain method combining current close-loop with dead-time compensation is put forward. Finally, the proposed restrain method is verified respectively on the built simulation and experimental analogue platform. And the simulation and experimental results indicate that the proposed method can not only satisfy the requirement of low-frequency oscillation restraining, but also be expanded widely, and the stability of the system can get improved greatly.
文摘In general, it is important to operate the; airgap length uniformly for improving the system efficiency independent of the flatness of the reaction plate in a railway propulsion system by a linear induction motor (LIM). And it is possible to operate the LIM propulsion system efficiently without a change of the LIM capacity through the airgap length control on the sloped rail. So, in this research, the authors introduce an airgap control system to control the airgap length which depends on the flatness of the secondary reaction plate when the LIM is operated, and design a rotary small-scaled LIM and its airgap control system before manufacturing the real system. Then, the authors analyze some characteristics of the LIM (thrust and normal force, input current, efficiency and power factor), and through the LIM control modeling, the authors finally analyze an effect of the airgap-length control of the LIM by the airgap control system.