The cyclic voltammetry, chronopotentiometry and chronoamperometry were used to study the behaviors of Fe 2+ on Pt, Cu, Ag and Ti electrodes in urea NaBr melt at 373 K. Electroreduction of Fe 2+ to metallic ...The cyclic voltammetry, chronopotentiometry and chronoamperometry were used to study the behaviors of Fe 2+ on Pt, Cu, Ag and Ti electrodes in urea NaBr melt at 373 K. Electroreduction of Fe 2+ to metallic Fe is irreversible in one step. The exchange current density determined on Ti electrode is 2 68×10 -5 A·cm -2 . Sm 3+ does not reduce to Sm alone, but can be inductively codeposited with Fe 2+ . Sm Fe alloy film contained over 90% Sm (mass fraction) can be obtained by potentiostatic electrolysis and galvanostatic electrolysis on Cu substrate. The Sm content in the alloy is related to the cathode potential, current density and the Sm 3+ /Fe 2+ molar ratio. The surface state of the Sm Fe deposit was studied by scanning electron microscopy.展开更多
Electroreduction of Ni(Ⅱ) to metallic Ni in urea NaBr melt at 373 K is irreversible in one step. Gd(Ⅲ) is not reduced to Gd alone, but can be inductively codeposited with Ni(Ⅱ). The amorphous Gd Ni alloy films were...Electroreduction of Ni(Ⅱ) to metallic Ni in urea NaBr melt at 373 K is irreversible in one step. Gd(Ⅲ) is not reduced to Gd alone, but can be inductively codeposited with Ni(Ⅱ). The amorphous Gd Ni alloy films were obtained by potentiostatic electrolysis and galvanostatic electrolysis. With the cathode potential shift to negative direction and the increase of current density, the content of gadolinium in the alloy increases first, and then drops down gradually. The molar ratio of Gd(Ⅲ) to Ni(Ⅱ) and the time also influence the content of Gd. Crystalline GdNi 3 alloy was obtained after heat treatment of the deposit. [展开更多
文摘The cyclic voltammetry, chronopotentiometry and chronoamperometry were used to study the behaviors of Fe 2+ on Pt, Cu, Ag and Ti electrodes in urea NaBr melt at 373 K. Electroreduction of Fe 2+ to metallic Fe is irreversible in one step. The exchange current density determined on Ti electrode is 2 68×10 -5 A·cm -2 . Sm 3+ does not reduce to Sm alone, but can be inductively codeposited with Fe 2+ . Sm Fe alloy film contained over 90% Sm (mass fraction) can be obtained by potentiostatic electrolysis and galvanostatic electrolysis on Cu substrate. The Sm content in the alloy is related to the cathode potential, current density and the Sm 3+ /Fe 2+ molar ratio. The surface state of the Sm Fe deposit was studied by scanning electron microscopy.
文摘Electroreduction of Ni(Ⅱ) to metallic Ni in urea NaBr melt at 373 K is irreversible in one step. Gd(Ⅲ) is not reduced to Gd alone, but can be inductively codeposited with Ni(Ⅱ). The amorphous Gd Ni alloy films were obtained by potentiostatic electrolysis and galvanostatic electrolysis. With the cathode potential shift to negative direction and the increase of current density, the content of gadolinium in the alloy increases first, and then drops down gradually. The molar ratio of Gd(Ⅲ) to Ni(Ⅱ) and the time also influence the content of Gd. Crystalline GdNi 3 alloy was obtained after heat treatment of the deposit. [