This study aims to thoroughly investigate the axial power peaking factors (PPF) within the low-enriched uranium (LEU) core of the Ghana Research Reactor-1 (GHARR-1). This study uses advanced simulation tools, like the...This study aims to thoroughly investigate the axial power peaking factors (PPF) within the low-enriched uranium (LEU) core of the Ghana Research Reactor-1 (GHARR-1). This study uses advanced simulation tools, like the MCNPX code for analysing neutron behavior and the PARET/ANL code for understanding power variations, to get a clearer picture of the reactor’s performance. The analysis covers the initial six years of GHARR-1’s operation and includes projections for its whole 60-year lifespan. We closely observed the patterns of both the highest and average PPFs at 21 axial nodes, with measurements taken every ten years. The findings of this study reveal important patterns in power distribution within the core, which are essential for improving the safety regulations and fuel management techniques of the reactor. We provide a meticulous approach, extensive data, and an analysis of the findings, highlighting the significance of continuous monitoring and analysis for proactive management of nuclear reactors. The findings of this study not only enhance our comprehension of nuclear reactor safety but also carry significant ramifications for sustainable energy progress in Ghana and the wider global context. Nuclear engineering is essential in tackling global concerns, such as the demand for clean and dependable energy sources. Research on optimising nuclear reactors, particularly in terms of safety and efficiency, is crucial for the ongoing advancement and acceptance of nuclear energy.展开更多
Consolidating carbon sink capacity and reducing carbon pressure are important channels to achieve the carbon peaking and carbon neutrality goals actively yet prudently.In order to study the current situation of carbon...Consolidating carbon sink capacity and reducing carbon pressure are important channels to achieve the carbon peaking and carbon neutrality goals actively yet prudently.In order to study the current situation of carbon pressure in the Northwestern Sichuan,we took the carbon pressure of the Aba Tibetan-Qiang autonomous prefecture(Aba prefecture)as an example and used the Intergovernmental Panel on Climate Change(IPCC)approach to measure the carbon emissions,carbon uptake,and the carbon balance index(CBI)of each county-level city in Aba prefecture from 2012 to 2020.The study found that:(a)There was a continuous trend of declining carbon emissions,increased carbon uptake,and decreased CBI in Aba prefecture during the sample period,but there is a large variability among county-level cities;(b)Aba prefecture differs in the spatiotemporal distribution of carbon emissions,carbon uptake,and CBI.Based on the research results,we propose several optimized paths for alleviating the current carbon pressure situation in the Northwestern Sichuan.展开更多
Peak load and wind energy emission pressure rise more as wind energy penetration keeps growing,which affects the stabilization of the PS(power system).This paper suggests integrated optimal dispatching of thermal powe...Peak load and wind energy emission pressure rise more as wind energy penetration keeps growing,which affects the stabilization of the PS(power system).This paper suggests integrated optimal dispatching of thermal power generators and BESS(battery energy storage system)taking wind energy emission grading punishment and deep peak clipping into consideration.Firstly,in order to minimize wind abandonment,a hierarchical wind abandonment penalty strategy based on fuzzy control is designed and introduced,and the optimal grid-connected power of wind energy is determined as a result of minimizing the peak cutting cost of the system.Secondly,considering BESS and thermal power,the management approach of BESS-assisted virtual peak clipping of thermal power generators is aimed at reducing the degree of deep peak clipping of thermal power generators and optimizing the output of thermal power generators and the charging and discharging power of BESS.Finally,Give an example of how this strategy has been effective in reducing abandonment rates by 0.66% and 7.46% individually for different wind penetration programs,and the daily average can reduce the peak clipping power output of thermal power generators by 42.97 and 72.31 MWh and enhances the effect and economy of system peak clipping.展开更多
The accurate prediction of peak overpressure of explosion shockwaves is significant in fields such as explosion hazard assessment and structural protection, where explosion shockwaves serve as typical destructive elem...The accurate prediction of peak overpressure of explosion shockwaves is significant in fields such as explosion hazard assessment and structural protection, where explosion shockwaves serve as typical destructive elements. Aiming at the problem of insufficient accuracy of the existing physical models for predicting the peak overpressure of ground reflected waves, two physics-informed machine learning models are constructed. The results demonstrate that the machine learning models, which incorporate physical information by predicting the deviation between the physical model and actual values and adding a physical loss term in the loss function, can accurately predict both the training and out-oftraining dataset. Compared to existing physical models, the average relative error in the predicted training domain is reduced from 17.459%-48.588% to 2%, and the proportion of average relative error less than 20% increased from 0% to 59.4% to more than 99%. In addition, the relative average error outside the prediction training set range is reduced from 14.496%-29.389% to 5%, and the proportion of relative average error less than 20% increased from 0% to 71.39% to more than 99%. The inclusion of a physical loss term enforcing monotonicity in the loss function effectively improves the extrapolation performance of machine learning. The findings of this study provide valuable reference for explosion hazard assessment and anti-explosion structural design in various fields.展开更多
According to the multi-time-scale characteristics of power generation and demand-side response(DR)resources,as well as the improvement of prediction accuracy along with the approaching operating point,a rolling peak s...According to the multi-time-scale characteristics of power generation and demand-side response(DR)resources,as well as the improvement of prediction accuracy along with the approaching operating point,a rolling peak shaving optimization model consisting of three different time scales has been proposed.The proposed peak shaving optimization model considers not only the generation resources of two different response speeds but also the two different DR resources and determines each unit combination,generation power,and demand response strategy on different time scales so as to participate in the peaking of the power system by taking full advantage of the fast response characteristics of the concentrating solar power(CSP).At the same time,in order to improve the accuracy of the scheduling results,the combination of the day-ahead peak shaving phase with scenario-based stochastic programming can further reduce the influence of wind power prediction errors on scheduling results.The testing results have shown that by optimizing the allocation of scheduling resources in each phase,it can effectively reduce the number of starts and stops of thermal power units and improve the economic efficiency of system operation.The spinning reserve capacity is reduced,and the effectiveness of the peak shaving strategy is verified.展开更多
Based on the supply-side perspective,the improved STIRPAT model is applied to reveal the mechanisms of supply-side factors such as human,capital,technology,industrial synergy,institutions and economic growth on carbon...Based on the supply-side perspective,the improved STIRPAT model is applied to reveal the mechanisms of supply-side factors such as human,capital,technology,industrial synergy,institutions and economic growth on carbon emissions in the Yangtze River Delta(YRD)through path analysis,and to forecast carbon emissions in the YRD from the baseline scenario,factor regulation scenario and integrated scenario to reach the peak.The results show that:(1)Jiangsu's high carbon emission pattern is the main reason for the YRD hindering the synergistic regulation of carbon emissions.(2)Human factors,institutional factors and economic growth factors can all contribute to carbon emissions in the YRD region,while technological and industrial factors can generally suppress carbon emissions in the YRD region.(3)Under the capital regulation scenario,the YRD region has the highest level of carbon emission synergy,with Jiangsu reaching its peak five years earlier.Under the balanced regulation scenario,the YRD region as a whole,Jiangsu,Zhejiang and Anhui reach the peak as scheduled.展开更多
Smoothed cepstral peak prominence(CPPs)is a measurement of the distance from the prominent cepstral peak to the linear regression line directly beneath it.Variations of CPPs data acquisition and analysis lead to the c...Smoothed cepstral peak prominence(CPPs)is a measurement of the distance from the prominent cepstral peak to the linear regression line directly beneath it.Variations of CPPs data acquisition and analysis lead to the complexity of the clinical cut-off values,and there are no agreeable values for a specific voice disorder,such as hypokinetic dysarthria associated with Parkinson’s disease(PD).This study examined the CPPs in people with hypokinetic dysarthria associated with PD compared with healthy participants.Results demonstrated significant differences in speech tasks of sustained vowel and connected speech,with CPPs of connected speech more sensitive to dysphonia and gender difference in PD participants.Males in PD participants presented higher CPPs for sustained vowels and lower CPPs for connected speech than females.It is implied that a consistent clinical application protocol is necessary,and multiple acoustic measures are needed to ensure the accuracy of clinical decisions.展开更多
Nature reserves play a significant role in providing ecosystem services and are key sites for biodiversity conservation.The Tianchi Bogda Peak Natural Reserve(TBPNR),located in Xinjiang Uygur Autonomous Region,China,i...Nature reserves play a significant role in providing ecosystem services and are key sites for biodiversity conservation.The Tianchi Bogda Peak Natural Reserve(TBPNR),located in Xinjiang Uygur Autonomous Region,China,is an important ecological barrier area in the temperate arid zone.The evaluation of its important ecosystem services is of great significance to improve the management level and ecological protection efficiency of the reserve.In the present study,we assessed the spatiotemporal variations of four ecosystem services(including net primary productivity(NPP),water yield,soil conservation,and habitat quality)in the TBPNR from 2000 to 2020 based on the environmental and social data using the Integrated Valuation of Ecosystem Services and Trade-offs(InVEST)model.In addition,the coldspot and hotspot areas of ecosystem services were identified by hotspot analysis,and the trade-off and synergistic relationships between ecosystem services were analyzed using factor analysis in a geographic detector.During the study period,NPP and soil conservation values in the reserve increased by 48.20%and 25.56%,respectively;conversely,water yield decreased by 16.56%,and there was no significant change in habitat quality.Spatially,both NPP and habitat quality values were higher in the northern part and lower in the southern part,whereas water yield showed an opposite trend.Correlation analysis revealed that NPP showed a synergistic relationship with habitat quality and soil conservation,and exhibited a trade-off relationship with water yield.Water yield and habitat quality also had a trade-off relationship.NPP and habitat quality were affected by annual average temperature and Normalized Difference Vegetation Index(NDVI),respectively,while water yield and soil conservation were more affected by digital elevation model(DEM).Therefore,attention should be paid to the spatial distribution and dynamics of trade-off and synergistic relationships between ecosystem services in future ecological management.The findings of the present study provide a reference that could facilitate the sustainable utilization of ecosystem services in the typical fragile areas of Northwest China.展开更多
The vision of reaching a carbon peak and achieving carbon neutrality is guiding the low-carbon transition of China’s socioeconomic system.Currently,a research gap remains in the existing literature in terms of studie...The vision of reaching a carbon peak and achieving carbon neutrality is guiding the low-carbon transition of China’s socioeconomic system.Currently,a research gap remains in the existing literature in terms of studies that systematically identify opportunities to achieve carbon neutrality.To address this gap,this study comprehensively collates and investigates 1105 published research studies regarding carbon peaking and carbon neutrality.In doing so,the principles of development in this area are quantitively analyzed from a space–time perspective.At the same time,this study traces shifts and alterations in research hotspots.This systematic review summarizes the priorities and standpoints of key industries on carbon peaking and carbon neutrality.Furthermore,with an emphasis on five key management science topics,the scientific concerns and strategic demands for these two carbon emission-reduction goals are clarified.The paper ends with theoretical insights on and practical countermeasures for actions,priority tasks,and policy measures that will enable China to achieve a carbon-neutral future.This study provides a complete picture of the research status on carbon peaking and carbon neutrality,as well as the research directions worth investigating in this field,which are crucial to the formulation of carbon peak and carbon neutrality policies.展开更多
To achieve the goals of national sustainable development, the peaking control of CO2 emissions is pivotal, as well as other pollutants. In this paper, we build a Chinese inter-regional CGE model and simulate 13 polici...To achieve the goals of national sustainable development, the peaking control of CO2 emissions is pivotal, as well as other pollutants. In this paper, we build a Chinese inter-regional CGE model and simulate 13 policies and their combinations. By analyzing the energy consumptions, coal consumptions, relating emissions and their impacts on GDP, we found that with the structure adjustment policy, the proportion of coal in primary fossil fuels in 2030 will decrease from 53% to 48% and CO2 emissions will decrease by 11.3%-22.8% compared to the baseline scenario. With the energy intensity reduction policy, CO2 emissions will decrease by 33.3% in 2030 and 47.8% in 2050 than baseline scenario. Other pollutants will also be controlled as synergetic effects. In this study we also find that although the earlier the peaking time the better for emission amounts control, the economic costs can not be ignored. The GDP will decrease by 2.96%-8.23% under different scenarios. Therefore, integrated policy solutions are needed for realizing the peaks package and more targeted measures are required to achieve the peaks of other pollutants earlier.展开更多
China has set the goal for its CO2 emissions to peak around 2030, which is not only a strategic decision coordinating domestic sustainable development and global climate change mitigation but also an overarching targe...China has set the goal for its CO2 emissions to peak around 2030, which is not only a strategic decision coordinating domestic sustainable development and global climate change mitigation but also an overarching target and a key point of action for China's resource conservation, environmental protection, shift in economic development patterns, and CO2 emission reduction to avoid climate change. The development stage where China maps out the CO2 emission peak target is earlier than that of the developed countries. It is a necessity that the non-fossil energy supplies be able to meet all the increased energy demand for achieving CO2 emission peaking. Given that China's potential GDP annual increasing rate will be more than 4%, and China's total energy demand will continue to increase by approximately 1.0%--1.5% annually around 2030, new and renewable energies will need to increase by 6%-8% annually to meet the desired CO2 emission peak. The share of new and renewable energies in China's total primary energy supply will be approximately 20% by 2030. At that time, the energy consumption elasticity will decrease to around 0.3, and the annual decrease in the rate of CO2 intensity will also be higher than 4% to ensure the sustained growth of GDE To achieve the CO2 emission peaking target and substantially promote the low-carbon deve!opment transformation, China needs to actively promote an energy production and consumption revolution, the innovation of advanced energy technologies, the reform of the energy regulatory system and pricing mechanism, and especially the construction of a national carbon emission cap and trade system.展开更多
The paper summarizes results of the China Energy Modeling Forum's(CEMF)first study.Carbon emissions peaking scenarios,consistent with China's Paris commitment,have been simulated with seven national and indust...The paper summarizes results of the China Energy Modeling Forum's(CEMF)first study.Carbon emissions peaking scenarios,consistent with China's Paris commitment,have been simulated with seven national and industry-level energy models and compared.The CO2 emission trends in the considered scenarios peak from 2015 to 2030 at the level of 9e11 Gt.Sector-level analysis suggests that total emissions pathways before 2030 will be determined mainly by dynamics of emissions in the electric power industry and transportation sector.Both sectors will experience significant increase in demand,but have low-carbon alternative options for development.Based on a side-by-side comparison of modeling input and results,conclusions have been drawn regarding the sources of emissions projections differences,which include data,views on economic perspectives,or models'structure and theoretical framework.Some suggestions have been made regarding energy models'development priorities for further research.展开更多
The impact of the E×B flow shear stabilization on particle transport and density peaking at JET is analyzed in the framework of integrated modelling with the CRONOS code.For that purpose,plasmas from a power scan...The impact of the E×B flow shear stabilization on particle transport and density peaking at JET is analyzed in the framework of integrated modelling with the CRONOS code.For that purpose,plasmas from a power scan which show a significant increasing of density peaking with the injected neutral beam injection power have been used as a modeling basis.By means of simulations with the quasilinear model GLF23 for the heat and particle transport,a strong link between the particle confinement and E×B flow shear stabilization is found.This is particularly important close to the pedestal region where the particle pinch direction becomes strongly inward for high E×B flow shear values.Such impact introduces some non-negligible deviation from the well-known collisonality dependence of the density peaking,whose general trend has been also obtained in the framework of this modelling by performing pedestal density scans.展开更多
The loss factors and their effects on the magnitude and frequency of resonance peaks in various mechanical sys-tems are reviewed for acoustic,vibration,and vibration fatigue applications.The main trends and relationsh...The loss factors and their effects on the magnitude and frequency of resonance peaks in various mechanical sys-tems are reviewed for acoustic,vibration,and vibration fatigue applications.The main trends and relationships were obtained for linear mechanical models with hysteresis damping.The well-known features(complex module of elasticity,total loss factor,etc.)are clarified for practical engineers and students,and new results are presented(in particular,for 2-DOF in-series models with hysteresis friction).The results are of both educational and prac-tical interest and may be applied for NVH analysis and testing,mechanical and aeromechanical design,and noise and vibration control in buildings.展开更多
In order to accurately predict the incident critical heat flux(ICHF,the heat flux at the heated surface when CHF occurs) of a water-cooled W/Cu monoblock for a divertor,the exact knowledge of its peaking factors(f_...In order to accurately predict the incident critical heat flux(ICHF,the heat flux at the heated surface when CHF occurs) of a water-cooled W/Cu monoblock for a divertor,the exact knowledge of its peaking factors(f_p) under one-sided heating conditions with different design parameters is a key issue.In this paper,the heat conduction in the solid domain of a water-cooled W/Cu monoblock is calculated numerically by assuming the local heat transfer coefficients(HTC)of the cooling wall to be functions of the local wall temperature,so as to obtain f_p.The reliability of the calculation method is validated by an experimental example result,with the maximum error of 2.1% only.The effects of geometric and flow parameters on the f_p of a water-cooled W/Cu monoblock are investigated.Within the scope of this study,it is shown that the f_p increases with increasing dimensionless W/Cu monoblock width and armour thickness(the shortest distance between the heated surface and Cu layer),and the maximum increases are 43.8% and 22.4% respectively.The dimensionless W/Cu monoblock height and Cu thickness have little effect on f_p.The increase of Reynolds number and Jakob number causes the increase of f_p,and the maximum increases are 6.8% and 9.6% respectively.Based on the calculated results,an empirical correlation on peaking factor is obtained via regression.These results provide a valuable reference for the thermal-hydraulic design of water-cooled divertors.展开更多
Many hydropower plants are operated as peak generators or frequency controllers, because they can change their output quickly to follow the fluctuating power demand. When meeting peak load requirements, a power statio...Many hydropower plants are operated as peak generators or frequency controllers, because they can change their output quickly to follow the fluctuating power demand. When meeting peak load requirements, a power station is turned on at a particular time during the day, generates power at a constant load for a certain number of hours, and is then turned off or set to a different load for another time period, resulting in a high variability inflow discharges. Where reservoir hydro schemes are operated primarily to provide peak load services, there are particular environmental risks that should be considered in any environmental impact assessment. At a minimum these should focus on water quality, fluvial geomorphology, riparian vegetation, macro-invertebrate and fish communities underpinned by a sound hydrological analysis. Frequent temperature changes may occur downstream of a peaking power station; increased seepage-induced erosion of riverbanks due to frequent water level drawdowns; and impacts to macro-invertebrate and fish communities due to rapid and frequent in channel habitat conditions. With a sound understanding of the potential environmental issues, there are strategies that can be employed at the siting and design stage to minimize or mitigate these risks, including but not limited to minimum environmental flows, ramping rules, utilization of a re-regulation storage and localized treatment works.展开更多
To correct spectral peak drift and obtain more reliable net counts,this study proposes a long short-term memory(LSTM)model fused with a convolutional neural network(CNN)to accurately estimate the relevant parameters o...To correct spectral peak drift and obtain more reliable net counts,this study proposes a long short-term memory(LSTM)model fused with a convolutional neural network(CNN)to accurately estimate the relevant parameters of a nuclear pulse signal by learning of samples.A predefined mathematical model was used to train the CNN-LSTM model and generate a dataset composed of distorted pulse sequences.The trained model was validated using simulated pulses.The relative errors in the amplitude estimation of pulse sequences with different degrees of distortion were obtained using triangular shaping,CNN-LSTM,and LSTM models.As a result,for severely distorted pulses,the relative error of the CNN-LSTM model in estimating the pulse parameters was reduced by 14.35%compared with that of the triangular shaping algorithm.For slightly distorted pulses,the relative error of the CNN-LSTM model was reduced by 0.33%compared with that of the triangular shaping algorithm.The model was then evaluated considering two performance indicators,the correction ratio and the efficiency ratio,which represent the proportion of the increase in peak area of the two characteristic peak regions of interest(ROIs)to the peak area of the corrected characteristic peak ROI and the proportion of the increase in peak area of the two characteristic peak ROIs to the peak areas of the two shadow peak ROI,respectively.Ten measurement results of the iron ore samples indicate that approximately 86.27%of the decreased peak area of the shadow peak ROI was corrected to the characteristic peak ROI,and the proportion of the corrected peak area to the peak area of the characteristic peak ROI was approximately 1.72%.The proposed CNN-LSTM model can be applied to X-ray energy spectrum correction,which is of great significance for X-ray spectroscopy and elemental content analyses.展开更多
There is a large amount of information in the network data that we canexploit. It is difficult for classical community detection algorithms to handle network data with sparse topology. Representation learning of netw...There is a large amount of information in the network data that we canexploit. It is difficult for classical community detection algorithms to handle network data with sparse topology. Representation learning of network data is usually paired with clustering algorithms to solve the community detection problem.Meanwhile, there is always an unpredictable distribution of class clusters outputby graph representation learning. Therefore, we propose an improved densitypeak clustering algorithm (ILDPC) for the community detection problem, whichimproves the local density mechanism in the original algorithm and can betteraccommodate class clusters of different shapes. And we study the communitydetection in network data. The algorithm is paired with the benchmark modelGraph sample and aggregate (GraphSAGE) to show the adaptability of ILDPCfor community detection. The plotted decision diagram shows that the ILDPCalgorithm is more discriminative in selecting density peak points compared tothe original algorithm. Finally, the performance of K-means and other clusteringalgorithms on this benchmark model is compared, and the algorithm is proved tobe more suitable for community detection in sparse networks with the benchmarkmodel on the evaluation criterion F1-score. The sensitivity of the parameters ofthe ILDPC algorithm to the low-dimensional vector set output by the benchmarkmodel GraphSAGE is also analyzed.展开更多
文摘This study aims to thoroughly investigate the axial power peaking factors (PPF) within the low-enriched uranium (LEU) core of the Ghana Research Reactor-1 (GHARR-1). This study uses advanced simulation tools, like the MCNPX code for analysing neutron behavior and the PARET/ANL code for understanding power variations, to get a clearer picture of the reactor’s performance. The analysis covers the initial six years of GHARR-1’s operation and includes projections for its whole 60-year lifespan. We closely observed the patterns of both the highest and average PPFs at 21 axial nodes, with measurements taken every ten years. The findings of this study reveal important patterns in power distribution within the core, which are essential for improving the safety regulations and fuel management techniques of the reactor. We provide a meticulous approach, extensive data, and an analysis of the findings, highlighting the significance of continuous monitoring and analysis for proactive management of nuclear reactors. The findings of this study not only enhance our comprehension of nuclear reactor safety but also carry significant ramifications for sustainable energy progress in Ghana and the wider global context. Nuclear engineering is essential in tackling global concerns, such as the demand for clean and dependable energy sources. Research on optimising nuclear reactors, particularly in terms of safety and efficiency, is crucial for the ongoing advancement and acceptance of nuclear energy.
基金This paper is part of“A Study on the Spatiotemporal Evolution,Dilemma and Optimized Paths of Carbon Balance in Aba Prefecture Under the Carbon Peaking and Carbon Neutrality Goals”(ABKT2022065)a program funded by the Prefecture Social Science Fund Project of Aba Prefecture。
文摘Consolidating carbon sink capacity and reducing carbon pressure are important channels to achieve the carbon peaking and carbon neutrality goals actively yet prudently.In order to study the current situation of carbon pressure in the Northwestern Sichuan,we took the carbon pressure of the Aba Tibetan-Qiang autonomous prefecture(Aba prefecture)as an example and used the Intergovernmental Panel on Climate Change(IPCC)approach to measure the carbon emissions,carbon uptake,and the carbon balance index(CBI)of each county-level city in Aba prefecture from 2012 to 2020.The study found that:(a)There was a continuous trend of declining carbon emissions,increased carbon uptake,and decreased CBI in Aba prefecture during the sample period,but there is a large variability among county-level cities;(b)Aba prefecture differs in the spatiotemporal distribution of carbon emissions,carbon uptake,and CBI.Based on the research results,we propose several optimized paths for alleviating the current carbon pressure situation in the Northwestern Sichuan.
基金supported by Jilin Province Higher Education Teaching Reform Research Project in 2021(JLJY202186163419).
文摘Peak load and wind energy emission pressure rise more as wind energy penetration keeps growing,which affects the stabilization of the PS(power system).This paper suggests integrated optimal dispatching of thermal power generators and BESS(battery energy storage system)taking wind energy emission grading punishment and deep peak clipping into consideration.Firstly,in order to minimize wind abandonment,a hierarchical wind abandonment penalty strategy based on fuzzy control is designed and introduced,and the optimal grid-connected power of wind energy is determined as a result of minimizing the peak cutting cost of the system.Secondly,considering BESS and thermal power,the management approach of BESS-assisted virtual peak clipping of thermal power generators is aimed at reducing the degree of deep peak clipping of thermal power generators and optimizing the output of thermal power generators and the charging and discharging power of BESS.Finally,Give an example of how this strategy has been effective in reducing abandonment rates by 0.66% and 7.46% individually for different wind penetration programs,and the daily average can reduce the peak clipping power output of thermal power generators by 42.97 and 72.31 MWh and enhances the effect and economy of system peak clipping.
文摘The accurate prediction of peak overpressure of explosion shockwaves is significant in fields such as explosion hazard assessment and structural protection, where explosion shockwaves serve as typical destructive elements. Aiming at the problem of insufficient accuracy of the existing physical models for predicting the peak overpressure of ground reflected waves, two physics-informed machine learning models are constructed. The results demonstrate that the machine learning models, which incorporate physical information by predicting the deviation between the physical model and actual values and adding a physical loss term in the loss function, can accurately predict both the training and out-oftraining dataset. Compared to existing physical models, the average relative error in the predicted training domain is reduced from 17.459%-48.588% to 2%, and the proportion of average relative error less than 20% increased from 0% to 59.4% to more than 99%. In addition, the relative average error outside the prediction training set range is reduced from 14.496%-29.389% to 5%, and the proportion of relative average error less than 20% increased from 0% to 71.39% to more than 99%. The inclusion of a physical loss term enforcing monotonicity in the loss function effectively improves the extrapolation performance of machine learning. The findings of this study provide valuable reference for explosion hazard assessment and anti-explosion structural design in various fields.
基金support of the projects Youth Science Foundation of Gansu Province(Source-Grid-Load Multi-Time Interval Optimization Scheduling Method Considering Wind-PV-CSP Combined DC Transmission,No.22JR11RA148)Youth Science Foundation of Lanzhou Jiaotong University(Research on Coordinated Dispatching Control Strategy of High Proportion New Energy Transmission Power System with CSP Power Generation,No.2020011).
文摘According to the multi-time-scale characteristics of power generation and demand-side response(DR)resources,as well as the improvement of prediction accuracy along with the approaching operating point,a rolling peak shaving optimization model consisting of three different time scales has been proposed.The proposed peak shaving optimization model considers not only the generation resources of two different response speeds but also the two different DR resources and determines each unit combination,generation power,and demand response strategy on different time scales so as to participate in the peaking of the power system by taking full advantage of the fast response characteristics of the concentrating solar power(CSP).At the same time,in order to improve the accuracy of the scheduling results,the combination of the day-ahead peak shaving phase with scenario-based stochastic programming can further reduce the influence of wind power prediction errors on scheduling results.The testing results have shown that by optimizing the allocation of scheduling resources in each phase,it can effectively reduce the number of starts and stops of thermal power units and improve the economic efficiency of system operation.The spinning reserve capacity is reduced,and the effectiveness of the peak shaving strategy is verified.
文摘Based on the supply-side perspective,the improved STIRPAT model is applied to reveal the mechanisms of supply-side factors such as human,capital,technology,industrial synergy,institutions and economic growth on carbon emissions in the Yangtze River Delta(YRD)through path analysis,and to forecast carbon emissions in the YRD from the baseline scenario,factor regulation scenario and integrated scenario to reach the peak.The results show that:(1)Jiangsu's high carbon emission pattern is the main reason for the YRD hindering the synergistic regulation of carbon emissions.(2)Human factors,institutional factors and economic growth factors can all contribute to carbon emissions in the YRD region,while technological and industrial factors can generally suppress carbon emissions in the YRD region.(3)Under the capital regulation scenario,the YRD region has the highest level of carbon emission synergy,with Jiangsu reaching its peak five years earlier.Under the balanced regulation scenario,the YRD region as a whole,Jiangsu,Zhejiang and Anhui reach the peak as scheduled.
文摘Smoothed cepstral peak prominence(CPPs)is a measurement of the distance from the prominent cepstral peak to the linear regression line directly beneath it.Variations of CPPs data acquisition and analysis lead to the complexity of the clinical cut-off values,and there are no agreeable values for a specific voice disorder,such as hypokinetic dysarthria associated with Parkinson’s disease(PD).This study examined the CPPs in people with hypokinetic dysarthria associated with PD compared with healthy participants.Results demonstrated significant differences in speech tasks of sustained vowel and connected speech,with CPPs of connected speech more sensitive to dysphonia and gender difference in PD participants.Males in PD participants presented higher CPPs for sustained vowels and lower CPPs for connected speech than females.It is implied that a consistent clinical application protocol is necessary,and multiple acoustic measures are needed to ensure the accuracy of clinical decisions.
基金This research was funded by the Key Laboratory for Sustainable Development of Xinjiang's Historical and Cultural Tourism,Xinjiang University,China(LY2022-06)the Tianchi Talent Project.
文摘Nature reserves play a significant role in providing ecosystem services and are key sites for biodiversity conservation.The Tianchi Bogda Peak Natural Reserve(TBPNR),located in Xinjiang Uygur Autonomous Region,China,is an important ecological barrier area in the temperate arid zone.The evaluation of its important ecosystem services is of great significance to improve the management level and ecological protection efficiency of the reserve.In the present study,we assessed the spatiotemporal variations of four ecosystem services(including net primary productivity(NPP),water yield,soil conservation,and habitat quality)in the TBPNR from 2000 to 2020 based on the environmental and social data using the Integrated Valuation of Ecosystem Services and Trade-offs(InVEST)model.In addition,the coldspot and hotspot areas of ecosystem services were identified by hotspot analysis,and the trade-off and synergistic relationships between ecosystem services were analyzed using factor analysis in a geographic detector.During the study period,NPP and soil conservation values in the reserve increased by 48.20%and 25.56%,respectively;conversely,water yield decreased by 16.56%,and there was no significant change in habitat quality.Spatially,both NPP and habitat quality values were higher in the northern part and lower in the southern part,whereas water yield showed an opposite trend.Correlation analysis revealed that NPP showed a synergistic relationship with habitat quality and soil conservation,and exhibited a trade-off relationship with water yield.Water yield and habitat quality also had a trade-off relationship.NPP and habitat quality were affected by annual average temperature and Normalized Difference Vegetation Index(NDVI),respectively,while water yield and soil conservation were more affected by digital elevation model(DEM).Therefore,attention should be paid to the spatial distribution and dynamics of trade-off and synergistic relationships between ecosystem services in future ecological management.The findings of the present study provide a reference that could facilitate the sustainable utilization of ecosystem services in the typical fragile areas of Northwest China.
基金the National Natural Science Foundation of China(71521002,72104025,and 72004011)China’s National Key Research and Development(R&D)Program(2016YFA0602603)China Post-doctoral Science Foundation(2021M690014)。
文摘The vision of reaching a carbon peak and achieving carbon neutrality is guiding the low-carbon transition of China’s socioeconomic system.Currently,a research gap remains in the existing literature in terms of studies that systematically identify opportunities to achieve carbon neutrality.To address this gap,this study comprehensively collates and investigates 1105 published research studies regarding carbon peaking and carbon neutrality.In doing so,the principles of development in this area are quantitively analyzed from a space–time perspective.At the same time,this study traces shifts and alterations in research hotspots.This systematic review summarizes the priorities and standpoints of key industries on carbon peaking and carbon neutrality.Furthermore,with an emphasis on five key management science topics,the scientific concerns and strategic demands for these two carbon emission-reduction goals are clarified.The paper ends with theoretical insights on and practical countermeasures for actions,priority tasks,and policy measures that will enable China to achieve a carbon-neutral future.This study provides a complete picture of the research status on carbon peaking and carbon neutrality,as well as the research directions worth investigating in this field,which are crucial to the formulation of carbon peak and carbon neutrality policies.
基金funded by the National Natural Fund of China(71173206)the Strategic Priority Research ProgramdClimate Change:Carbon Budget and Related Issues of the Chinese Academy of Sciences(XDA05150300)
文摘To achieve the goals of national sustainable development, the peaking control of CO2 emissions is pivotal, as well as other pollutants. In this paper, we build a Chinese inter-regional CGE model and simulate 13 policies and their combinations. By analyzing the energy consumptions, coal consumptions, relating emissions and their impacts on GDP, we found that with the structure adjustment policy, the proportion of coal in primary fossil fuels in 2030 will decrease from 53% to 48% and CO2 emissions will decrease by 11.3%-22.8% compared to the baseline scenario. With the energy intensity reduction policy, CO2 emissions will decrease by 33.3% in 2030 and 47.8% in 2050 than baseline scenario. Other pollutants will also be controlled as synergetic effects. In this study we also find that although the earlier the peaking time the better for emission amounts control, the economic costs can not be ignored. The GDP will decrease by 2.96%-8.23% under different scenarios. Therefore, integrated policy solutions are needed for realizing the peaks package and more targeted measures are required to achieve the peaks of other pollutants earlier.
基金supported by Major Program of Humanities and Social Science Base,Ministry of Education(No.10JJD630011)
文摘China has set the goal for its CO2 emissions to peak around 2030, which is not only a strategic decision coordinating domestic sustainable development and global climate change mitigation but also an overarching target and a key point of action for China's resource conservation, environmental protection, shift in economic development patterns, and CO2 emission reduction to avoid climate change. The development stage where China maps out the CO2 emission peak target is earlier than that of the developed countries. It is a necessity that the non-fossil energy supplies be able to meet all the increased energy demand for achieving CO2 emission peaking. Given that China's potential GDP annual increasing rate will be more than 4%, and China's total energy demand will continue to increase by approximately 1.0%--1.5% annually around 2030, new and renewable energies will need to increase by 6%-8% annually to meet the desired CO2 emission peak. The share of new and renewable energies in China's total primary energy supply will be approximately 20% by 2030. At that time, the energy consumption elasticity will decrease to around 0.3, and the annual decrease in the rate of CO2 intensity will also be higher than 4% to ensure the sustained growth of GDE To achieve the CO2 emission peaking target and substantially promote the low-carbon deve!opment transformation, China needs to actively promote an energy production and consumption revolution, the innovation of advanced energy technologies, the reform of the energy regulatory system and pricing mechanism, and especially the construction of a national carbon emission cap and trade system.
文摘The paper summarizes results of the China Energy Modeling Forum's(CEMF)first study.Carbon emissions peaking scenarios,consistent with China's Paris commitment,have been simulated with seven national and industry-level energy models and compared.The CO2 emission trends in the considered scenarios peak from 2015 to 2030 at the level of 9e11 Gt.Sector-level analysis suggests that total emissions pathways before 2030 will be determined mainly by dynamics of emissions in the electric power industry and transportation sector.Both sectors will experience significant increase in demand,but have low-carbon alternative options for development.Based on a side-by-side comparison of modeling input and results,conclusions have been drawn regarding the sources of emissions projections differences,which include data,views on economic perspectives,or models'structure and theoretical framework.Some suggestions have been made regarding energy models'development priorities for further research.
基金supported by The Franco-Thai scholarship program and Development and Promotion of Science and Technology Talents Projectbeen carried out within the framework of the EUROfusion Consortium and has received funding from the Euratom research and training programme 2014-2018 under grant agreement No.633053。
文摘The impact of the E×B flow shear stabilization on particle transport and density peaking at JET is analyzed in the framework of integrated modelling with the CRONOS code.For that purpose,plasmas from a power scan which show a significant increasing of density peaking with the injected neutral beam injection power have been used as a modeling basis.By means of simulations with the quasilinear model GLF23 for the heat and particle transport,a strong link between the particle confinement and E×B flow shear stabilization is found.This is particularly important close to the pedestal region where the particle pinch direction becomes strongly inward for high E×B flow shear values.Such impact introduces some non-negligible deviation from the well-known collisonality dependence of the density peaking,whose general trend has been also obtained in the framework of this modelling by performing pedestal density scans.
文摘The loss factors and their effects on the magnitude and frequency of resonance peaks in various mechanical sys-tems are reviewed for acoustic,vibration,and vibration fatigue applications.The main trends and relationships were obtained for linear mechanical models with hysteresis damping.The well-known features(complex module of elasticity,total loss factor,etc.)are clarified for practical engineers and students,and new results are presented(in particular,for 2-DOF in-series models with hysteresis friction).The results are of both educational and prac-tical interest and may be applied for NVH analysis and testing,mechanical and aeromechanical design,and noise and vibration control in buildings.
基金supported by National Magnetic Confinement Fusion Science Program of China(No.2010GB104005)Funding of Jiangsu Innovation Program for Graduate Education,China(CXLX12_0170)the Fundamental Research Funds for the Central Universities of China
文摘In order to accurately predict the incident critical heat flux(ICHF,the heat flux at the heated surface when CHF occurs) of a water-cooled W/Cu monoblock for a divertor,the exact knowledge of its peaking factors(f_p) under one-sided heating conditions with different design parameters is a key issue.In this paper,the heat conduction in the solid domain of a water-cooled W/Cu monoblock is calculated numerically by assuming the local heat transfer coefficients(HTC)of the cooling wall to be functions of the local wall temperature,so as to obtain f_p.The reliability of the calculation method is validated by an experimental example result,with the maximum error of 2.1% only.The effects of geometric and flow parameters on the f_p of a water-cooled W/Cu monoblock are investigated.Within the scope of this study,it is shown that the f_p increases with increasing dimensionless W/Cu monoblock width and armour thickness(the shortest distance between the heated surface and Cu layer),and the maximum increases are 43.8% and 22.4% respectively.The dimensionless W/Cu monoblock height and Cu thickness have little effect on f_p.The increase of Reynolds number and Jakob number causes the increase of f_p,and the maximum increases are 6.8% and 9.6% respectively.Based on the calculated results,an empirical correlation on peaking factor is obtained via regression.These results provide a valuable reference for the thermal-hydraulic design of water-cooled divertors.
文摘Many hydropower plants are operated as peak generators or frequency controllers, because they can change their output quickly to follow the fluctuating power demand. When meeting peak load requirements, a power station is turned on at a particular time during the day, generates power at a constant load for a certain number of hours, and is then turned off or set to a different load for another time period, resulting in a high variability inflow discharges. Where reservoir hydro schemes are operated primarily to provide peak load services, there are particular environmental risks that should be considered in any environmental impact assessment. At a minimum these should focus on water quality, fluvial geomorphology, riparian vegetation, macro-invertebrate and fish communities underpinned by a sound hydrological analysis. Frequent temperature changes may occur downstream of a peaking power station; increased seepage-induced erosion of riverbanks due to frequent water level drawdowns; and impacts to macro-invertebrate and fish communities due to rapid and frequent in channel habitat conditions. With a sound understanding of the potential environmental issues, there are strategies that can be employed at the siting and design stage to minimize or mitigate these risks, including but not limited to minimum environmental flows, ramping rules, utilization of a re-regulation storage and localized treatment works.
基金This work was supported by the Open Project of the Guangxi Key Laboratory of Nuclear Physics and Nuclear Technology(No.NLK2022-05)Central Government Guidance Funds for Local Scientific and Technological Development,China(No.Guike ZY22096024)+3 种基金Sichuan Natural Science Youth Fund Project(No.2023NSFSC1366)Open Research Fund of the National Engineering Research Center for Agro-Ecological Big Data Analysis&Application,Anhui University(No.AE202209)Research Fund of Guangxi Key Lab of Multi-source Information Mining&Security(MIMS22-04)National Natural Science Youth Foundation of China(No.12305214).
文摘To correct spectral peak drift and obtain more reliable net counts,this study proposes a long short-term memory(LSTM)model fused with a convolutional neural network(CNN)to accurately estimate the relevant parameters of a nuclear pulse signal by learning of samples.A predefined mathematical model was used to train the CNN-LSTM model and generate a dataset composed of distorted pulse sequences.The trained model was validated using simulated pulses.The relative errors in the amplitude estimation of pulse sequences with different degrees of distortion were obtained using triangular shaping,CNN-LSTM,and LSTM models.As a result,for severely distorted pulses,the relative error of the CNN-LSTM model in estimating the pulse parameters was reduced by 14.35%compared with that of the triangular shaping algorithm.For slightly distorted pulses,the relative error of the CNN-LSTM model was reduced by 0.33%compared with that of the triangular shaping algorithm.The model was then evaluated considering two performance indicators,the correction ratio and the efficiency ratio,which represent the proportion of the increase in peak area of the two characteristic peak regions of interest(ROIs)to the peak area of the corrected characteristic peak ROI and the proportion of the increase in peak area of the two characteristic peak ROIs to the peak areas of the two shadow peak ROI,respectively.Ten measurement results of the iron ore samples indicate that approximately 86.27%of the decreased peak area of the shadow peak ROI was corrected to the characteristic peak ROI,and the proportion of the corrected peak area to the peak area of the characteristic peak ROI was approximately 1.72%.The proposed CNN-LSTM model can be applied to X-ray energy spectrum correction,which is of great significance for X-ray spectroscopy and elemental content analyses.
基金The National Natural Science Foundation of China(No.61762031)The Science and Technology Major Project of Guangxi Province(NO.AA19046004)The Natural Science Foundation of Guangxi(No.2021JJA170130).
文摘There is a large amount of information in the network data that we canexploit. It is difficult for classical community detection algorithms to handle network data with sparse topology. Representation learning of network data is usually paired with clustering algorithms to solve the community detection problem.Meanwhile, there is always an unpredictable distribution of class clusters outputby graph representation learning. Therefore, we propose an improved densitypeak clustering algorithm (ILDPC) for the community detection problem, whichimproves the local density mechanism in the original algorithm and can betteraccommodate class clusters of different shapes. And we study the communitydetection in network data. The algorithm is paired with the benchmark modelGraph sample and aggregate (GraphSAGE) to show the adaptability of ILDPCfor community detection. The plotted decision diagram shows that the ILDPCalgorithm is more discriminative in selecting density peak points compared tothe original algorithm. Finally, the performance of K-means and other clusteringalgorithms on this benchmark model is compared, and the algorithm is proved tobe more suitable for community detection in sparse networks with the benchmarkmodel on the evaluation criterion F1-score. The sensitivity of the parameters ofthe ILDPC algorithm to the low-dimensional vector set output by the benchmarkmodel GraphSAGE is also analyzed.