Under the background of industrial 4.0, due to the emergence of intelligent factory, end-to-end digital network can better service to create intelligent products, procedures and process, and able to manage complex thi...Under the background of industrial 4.0, due to the emergence of intelligent factory, end-to-end digital network can better service to create intelligent products, procedures and process, and able to manage complex things, and manufacture products more effi ciently. In industrial 4.0 era, people and technology constant interaction becomes possible. People will be the variable instead of constant in the production process. Each producer is likely to provide creative contributions to the fi nal shape of the individualized product, instead of changing mechanically a few innovators design into product. Therefore, exploring the industrial background of applied talents training mode, cultivating real talents to meet the needs of the intelligent technology become the priority of the development of advanced manufacturing technology under the background of industrial 4.0.展开更多
Despite of the acceleration of investments and the expansion of countries towards the Industry 4.0, companies have difficulties in planning the transition processes and implementation of the scenarios of Industry 4....Despite of the acceleration of investments and the expansion of countries towards the Industry 4.0, companies have difficulties in planning the transition processes and implementation of the scenarios of Industry 4.0. To benefit from the Industry Approach 4.0, it is necessary to take technological and organizational transition processes into account, since the phenomenon involves interoperability between humans; between humans and machines; and between machines and production. This paper proposes to examine the transformation processes of the current industrial model to the Industry 4.0 model of FESTO AG, in addition to the framework proposition for the analysis of transformation processes for Industry 4.0. Through the face-to-face interviews and the institutional materials of FESTO, it was observed that the company inserted in its strategy of products and innovation the concept of Industry 4.0. To do so, FESTO planned and built a new production plant based on connectivity, sustainability, and collaborative environment, especially between man and machine. To support this orientation, FESTO has strengthened its technological base, culture, training of its productive, commercial, and management teams.展开更多
The world has experienced 3 Industrial Revolutions.Right now,we are at the beginning of the 4th Industrial Revolution.4.0 Revolution is based on the digital revolution,characterized by the increasingly popular interne...The world has experienced 3 Industrial Revolutions.Right now,we are at the beginning of the 4th Industrial Revolution.4.0 Revolution is based on the digital revolution,characterized by the increasingly popular internet and mobile,by smaller and more powerful semiconductors at cheaper price and by Artificial Intelligence.Digital technologies with computer hardware,software and networks are becoming more and more complex,more integrated,thus transforming society.Faced with the unprecedented impact of the 4.0 Revolution,depending on the size of the economy and the level of technology,countries around the world have policies to adapt,catch up and take advantage of the achievements of the revolution.This revolution serves the sustainable development of our country.This article summarizes the policies of some countries such as Germany,the United States,Japan,Singapore,Republic of Korea,India,China,Taiwan,...under the impact of the 4.0 Revolution;thereby drawing lessons for Vietnam in the process of implementing the 4.0 Revolution to avoid negative impacts,take advantage of the pre-eminence of the revolution in socio-economic development.展开更多
近年来,使用恶意Excel 4.0宏(XLM)文档的攻击迎来了爆发,而XLM代码往往经过复杂的混淆,现有方法或检测系统难以分析海量样本的真实功能。因此,针对恶意样本中使用的各类混淆技术,基于抽象语法树和模拟执行,设计和实现了包含138个宏函数...近年来,使用恶意Excel 4.0宏(XLM)文档的攻击迎来了爆发,而XLM代码往往经过复杂的混淆,现有方法或检测系统难以分析海量样本的真实功能。因此,针对恶意样本中使用的各类混淆技术,基于抽象语法树和模拟执行,设计和实现了包含138个宏函数处理程序的自动化XLM反混淆与关键威胁指标(IOC,indicators of compromise)提取系统XLMRevealer;在此基础上,根据XLM代码特点提取Word和Token特征,通过特征融合能够捕获多层次细粒度特征,并在XLMRevealer中构造CNN-BiLSTM(convolution neural network-bidirectional long short term memory)模型,从不同维度挖掘家族样本的关联性和完成家族分类。最后,从5个来源构建包含2346个样本的数据集并用于反混淆实验和家族分类实验。实验结果表明,XLMRevealer的反混淆成功率达到71.3%,相比XLMMacroDeobfuscator和SYMBEXCEL工具分别提高了20.8%和15.8%;反混淆效率稳定,平均耗时仅为0.512 s。XLMRevealer对去混淆XLM代码的家族分类准确率高达94.88%,效果优于所有基线模型,有效体现Word和Token特征融合的优势。此外,为探索反混淆对家族分类的影响,并考虑不同家族使用的混淆技术可能有所不同,模型会识别到混淆技术的特征,分别对反混淆前和反混淆后再统一混淆的XLM代码进行实验,家族分类准确率为89.58%、53.61%,证明模型能够学习混淆技术特征,更验证了反混淆对家族分类极大的促进作用。展开更多
Nowadays,the rapid development of the social economy inevitably leads to global energy and environmental crisis.For this reason,more and more scholars focus on the development of photocatalysis and/or electrocatalysis...Nowadays,the rapid development of the social economy inevitably leads to global energy and environmental crisis.For this reason,more and more scholars focus on the development of photocatalysis and/or electrocatalysis technology for the advantage in the sustainable production of high-value-added products,and the high efficiency in pollutants remediation.Although there is plenty of outstanding research has been put forward continuously,most of them focuses on catalysis performance and reaction mechanisms in laboratory conditions.Realizing industrial application of photo/electrocatalytic processes is still a challenge that needs to be overcome by social demand.In this regard,this review comprehensively summarized several explorations in thefield of photo/electrocatalytic reduction towards potential industrial applications in recent years.Special attention is paid to the successful attempts and the current status of photo/electrocatalytic water splitting,carbon dioxide conversion,resource utilization from waste,etc.,by using advanced reactors.The key problems and challenges of photo/electrocatalysis in future industrial practice are also discussed,and the possible development directions are also pointed out from the industry view.展开更多
The proposed study focuses on the critical issue of corrosion,which leads to significant economic losses and safety risks worldwide.A key area of emphasis is the accuracy of corrosion detection methods.While recent st...The proposed study focuses on the critical issue of corrosion,which leads to significant economic losses and safety risks worldwide.A key area of emphasis is the accuracy of corrosion detection methods.While recent studies have made progress,a common challenge is the low accuracy of existing detection models.These models often struggle to reliably identify corrosion tendencies,which are crucial for minimizing industrial risks and optimizing resource use.The proposed study introduces an innovative approach that significantly improves the accuracy of corrosion detection using a convolutional neural network(CNN),as well as two pretrained models,namely YOLOv8 and EfficientNetB0.By leveraging advanced technologies and methodologies,we have achieved high accuracies in identifying and managing the hazards associated with corrosion across various industrial settings.This advancement not only supports the overarching goals of enhancing safety and efficiency,but also sets a new benchmark for future research in the field.The results demonstrate a significant improvement in the ability to detect and mitigate corrosion-related concerns,providing a more accurate and comprehensive solution for industries facing these challenges.Both CNN and EfficientNetB0 exhibited 100%accuracy,precision,recall,and F1-score,followed by YOLOv8 with respective metrics of 95%,100%,90%,and 94.74%.Our approach outperformed state-of-the-art with similar datasets and methodologies.展开更多
Failure detection is an essential task in industrial systems for preventing costly downtime and ensuring the seamlessoperation of the system. Current industrial processes are getting smarter with the emergence of Indu...Failure detection is an essential task in industrial systems for preventing costly downtime and ensuring the seamlessoperation of the system. Current industrial processes are getting smarter with the emergence of Industry 4.0.Specifically, various modernized industrial processes have been equipped with quite a few sensors to collectprocess-based data to find faults arising or prevailing in processes along with monitoring the status of processes.Fault diagnosis of rotating machines serves a main role in the engineering field and industrial production. Dueto the disadvantages of existing fault, diagnosis approaches, which greatly depend on professional experienceand human knowledge, intellectual fault diagnosis based on deep learning (DL) has attracted the researcher’sinterest. DL reaches the desired fault classification and automatic feature learning. Therefore, this article designs a Gradient Optimizer Algorithm with Hybrid Deep Learning-based Failure Detection and Classification (GOAHDLFDC)in the industrial environment. The presented GOAHDL-FDC technique initially applies continuous wavelettransform (CWT) for preprocessing the actual vibrational signals of the rotating machinery. Next, the residualnetwork (ResNet18) model was exploited for the extraction of features from the vibration signals which are thenfed into theHDLmodel for automated fault detection. Finally, theGOA-based hyperparameter tuning is performedtoadjust the parameter valuesof theHDLmodel accurately.The experimental result analysis of the GOAHDL-FD Calgorithm takes place using a series of simulations and the experimentation outcomes highlight the better resultsof the GOAHDL-FDC technique under different aspects.展开更多
文摘Under the background of industrial 4.0, due to the emergence of intelligent factory, end-to-end digital network can better service to create intelligent products, procedures and process, and able to manage complex things, and manufacture products more effi ciently. In industrial 4.0 era, people and technology constant interaction becomes possible. People will be the variable instead of constant in the production process. Each producer is likely to provide creative contributions to the fi nal shape of the individualized product, instead of changing mechanically a few innovators design into product. Therefore, exploring the industrial background of applied talents training mode, cultivating real talents to meet the needs of the intelligent technology become the priority of the development of advanced manufacturing technology under the background of industrial 4.0.
文摘Despite of the acceleration of investments and the expansion of countries towards the Industry 4.0, companies have difficulties in planning the transition processes and implementation of the scenarios of Industry 4.0. To benefit from the Industry Approach 4.0, it is necessary to take technological and organizational transition processes into account, since the phenomenon involves interoperability between humans; between humans and machines; and between machines and production. This paper proposes to examine the transformation processes of the current industrial model to the Industry 4.0 model of FESTO AG, in addition to the framework proposition for the analysis of transformation processes for Industry 4.0. Through the face-to-face interviews and the institutional materials of FESTO, it was observed that the company inserted in its strategy of products and innovation the concept of Industry 4.0. To do so, FESTO planned and built a new production plant based on connectivity, sustainability, and collaborative environment, especially between man and machine. To support this orientation, FESTO has strengthened its technological base, culture, training of its productive, commercial, and management teams.
文摘The world has experienced 3 Industrial Revolutions.Right now,we are at the beginning of the 4th Industrial Revolution.4.0 Revolution is based on the digital revolution,characterized by the increasingly popular internet and mobile,by smaller and more powerful semiconductors at cheaper price and by Artificial Intelligence.Digital technologies with computer hardware,software and networks are becoming more and more complex,more integrated,thus transforming society.Faced with the unprecedented impact of the 4.0 Revolution,depending on the size of the economy and the level of technology,countries around the world have policies to adapt,catch up and take advantage of the achievements of the revolution.This revolution serves the sustainable development of our country.This article summarizes the policies of some countries such as Germany,the United States,Japan,Singapore,Republic of Korea,India,China,Taiwan,...under the impact of the 4.0 Revolution;thereby drawing lessons for Vietnam in the process of implementing the 4.0 Revolution to avoid negative impacts,take advantage of the pre-eminence of the revolution in socio-economic development.
文摘近年来,使用恶意Excel 4.0宏(XLM)文档的攻击迎来了爆发,而XLM代码往往经过复杂的混淆,现有方法或检测系统难以分析海量样本的真实功能。因此,针对恶意样本中使用的各类混淆技术,基于抽象语法树和模拟执行,设计和实现了包含138个宏函数处理程序的自动化XLM反混淆与关键威胁指标(IOC,indicators of compromise)提取系统XLMRevealer;在此基础上,根据XLM代码特点提取Word和Token特征,通过特征融合能够捕获多层次细粒度特征,并在XLMRevealer中构造CNN-BiLSTM(convolution neural network-bidirectional long short term memory)模型,从不同维度挖掘家族样本的关联性和完成家族分类。最后,从5个来源构建包含2346个样本的数据集并用于反混淆实验和家族分类实验。实验结果表明,XLMRevealer的反混淆成功率达到71.3%,相比XLMMacroDeobfuscator和SYMBEXCEL工具分别提高了20.8%和15.8%;反混淆效率稳定,平均耗时仅为0.512 s。XLMRevealer对去混淆XLM代码的家族分类准确率高达94.88%,效果优于所有基线模型,有效体现Word和Token特征融合的优势。此外,为探索反混淆对家族分类的影响,并考虑不同家族使用的混淆技术可能有所不同,模型会识别到混淆技术的特征,分别对反混淆前和反混淆后再统一混淆的XLM代码进行实验,家族分类准确率为89.58%、53.61%,证明模型能够学习混淆技术特征,更验证了反混淆对家族分类极大的促进作用。
基金supported by the National Natural Science Foundation of China(22278030,22090032,22090030,22288102,22242019)the Fundamental Research Funds for the Central Universities(buctrc202119,2312018RC07)+1 种基金Major Program of Qingyuan Innovation Laboratory(Grant No.001220005)the Experiments for Space Exploration Program and the Qian Xuesen Laboratory,China Academy of Space Technology。
文摘Nowadays,the rapid development of the social economy inevitably leads to global energy and environmental crisis.For this reason,more and more scholars focus on the development of photocatalysis and/or electrocatalysis technology for the advantage in the sustainable production of high-value-added products,and the high efficiency in pollutants remediation.Although there is plenty of outstanding research has been put forward continuously,most of them focuses on catalysis performance and reaction mechanisms in laboratory conditions.Realizing industrial application of photo/electrocatalytic processes is still a challenge that needs to be overcome by social demand.In this regard,this review comprehensively summarized several explorations in thefield of photo/electrocatalytic reduction towards potential industrial applications in recent years.Special attention is paid to the successful attempts and the current status of photo/electrocatalytic water splitting,carbon dioxide conversion,resource utilization from waste,etc.,by using advanced reactors.The key problems and challenges of photo/electrocatalysis in future industrial practice are also discussed,and the possible development directions are also pointed out from the industry view.
文摘The proposed study focuses on the critical issue of corrosion,which leads to significant economic losses and safety risks worldwide.A key area of emphasis is the accuracy of corrosion detection methods.While recent studies have made progress,a common challenge is the low accuracy of existing detection models.These models often struggle to reliably identify corrosion tendencies,which are crucial for minimizing industrial risks and optimizing resource use.The proposed study introduces an innovative approach that significantly improves the accuracy of corrosion detection using a convolutional neural network(CNN),as well as two pretrained models,namely YOLOv8 and EfficientNetB0.By leveraging advanced technologies and methodologies,we have achieved high accuracies in identifying and managing the hazards associated with corrosion across various industrial settings.This advancement not only supports the overarching goals of enhancing safety and efficiency,but also sets a new benchmark for future research in the field.The results demonstrate a significant improvement in the ability to detect and mitigate corrosion-related concerns,providing a more accurate and comprehensive solution for industries facing these challenges.Both CNN and EfficientNetB0 exhibited 100%accuracy,precision,recall,and F1-score,followed by YOLOv8 with respective metrics of 95%,100%,90%,and 94.74%.Our approach outperformed state-of-the-art with similar datasets and methodologies.
基金The Deanship of Scientific Research(DSR)at King Abdulaziz University(KAU),Jeddah,Saudi Arabia has funded this project under Grant No.(G:651-135-1443).
文摘Failure detection is an essential task in industrial systems for preventing costly downtime and ensuring the seamlessoperation of the system. Current industrial processes are getting smarter with the emergence of Industry 4.0.Specifically, various modernized industrial processes have been equipped with quite a few sensors to collectprocess-based data to find faults arising or prevailing in processes along with monitoring the status of processes.Fault diagnosis of rotating machines serves a main role in the engineering field and industrial production. Dueto the disadvantages of existing fault, diagnosis approaches, which greatly depend on professional experienceand human knowledge, intellectual fault diagnosis based on deep learning (DL) has attracted the researcher’sinterest. DL reaches the desired fault classification and automatic feature learning. Therefore, this article designs a Gradient Optimizer Algorithm with Hybrid Deep Learning-based Failure Detection and Classification (GOAHDLFDC)in the industrial environment. The presented GOAHDL-FDC technique initially applies continuous wavelettransform (CWT) for preprocessing the actual vibrational signals of the rotating machinery. Next, the residualnetwork (ResNet18) model was exploited for the extraction of features from the vibration signals which are thenfed into theHDLmodel for automated fault detection. Finally, theGOA-based hyperparameter tuning is performedtoadjust the parameter valuesof theHDLmodel accurately.The experimental result analysis of the GOAHDL-FD Calgorithm takes place using a series of simulations and the experimentation outcomes highlight the better resultsof the GOAHDL-FDC technique under different aspects.