期刊文献+
共找到296,087篇文章
< 1 2 250 >
每页显示 20 50 100
The Effect of Key Nodes on theMalware Dynamics in the Industrial Control Network
1
作者 Qiang Fu JunWang +1 位作者 Changfu Si Jiawei Liu 《Computers, Materials & Continua》 SCIE EI 2024年第4期329-349,共21页
As industrialization and informatization becomemore deeply intertwined,industrial control networks have entered an era of intelligence.The connection between industrial control networks and the external internet is be... As industrialization and informatization becomemore deeply intertwined,industrial control networks have entered an era of intelligence.The connection between industrial control networks and the external internet is becoming increasingly close,which leads to frequent security accidents.This paper proposes a model for the industrial control network.It includes a malware containment strategy that integrates intrusion detection,quarantine,and monitoring.Basedonthismodel,the role of keynodes in the spreadofmalware is studied,a comparisonexperiment is conducted to validate the impact of the containment strategy.In addition,the dynamic behavior of the model is analyzed,the basic reproduction number is computed,and the disease-free and endemic equilibrium of the model is also obtained by the basic reproduction number.Moreover,through simulation experiments,the effectiveness of the containment strategy is validated,the influence of the relevant parameters is analyzed,and the containment strategy is optimized.In otherwords,selective immunity to key nodes can effectively suppress the spread ofmalware andmaintain the stability of industrial control systems.The earlier the immunization of key nodes,the better.Once the time exceeds the threshold,immunizing key nodes is almost ineffective.The analysis provides a better way to contain the malware in the industrial control network. 展开更多
关键词 Key nodes dynamic model industrial control network SIMULATION
下载PDF
An Industrial Intrusion Detection Method Based on Hybrid Convolutional Neural Networks with Improved TCN
2
作者 Zhihua Liu Shengquan Liu Jian Zhang 《Computers, Materials & Continua》 SCIE EI 2024年第1期411-433,共23页
Network intrusion detection systems(NIDS)based on deep learning have continued to make significant advances.However,the following challenges remain:on the one hand,simply applying only Temporal Convolutional Networks(... Network intrusion detection systems(NIDS)based on deep learning have continued to make significant advances.However,the following challenges remain:on the one hand,simply applying only Temporal Convolutional Networks(TCNs)can lead to models that ignore the impact of network traffic features at different scales on the detection performance.On the other hand,some intrusion detection methods considermulti-scale information of traffic data,but considering only forward network traffic information can lead to deficiencies in capturing multi-scale temporal features.To address both of these issues,we propose a hybrid Convolutional Neural Network that supports a multi-output strategy(BONUS)for industrial internet intrusion detection.First,we create a multiscale Temporal Convolutional Network by stacking TCN of different scales to capture the multiscale information of network traffic.Meanwhile,we propose a bi-directional structure and dynamically set the weights to fuse the forward and backward contextual information of network traffic at each scale to enhance the model’s performance in capturing the multi-scale temporal features of network traffic.In addition,we introduce a gated network for each of the two branches in the proposed method to assist the model in learning the feature representation of each branch.Extensive experiments reveal the effectiveness of the proposed approach on two publicly available traffic intrusion detection datasets named UNSW-NB15 and NSL-KDD with F1 score of 85.03% and 99.31%,respectively,which also validates the effectiveness of enhancing the model’s ability to capture multi-scale temporal features of traffic data on detection performance. 展开更多
关键词 Intrusion detection industrial internet channel spatial attention multiscale features dynamic fusion multi-output learning strategy
下载PDF
Intrusion Detection System for Smart Industrial Environments with Ensemble Feature Selection and Deep Convolutional Neural Networks
3
作者 Asad Raza Shahzad Memon +1 位作者 Muhammad Ali Nizamani Mahmood Hussain Shah 《Intelligent Automation & Soft Computing》 2024年第3期545-566,共22页
Smart Industrial environments use the Industrial Internet of Things(IIoT)for their routine operations and transform their industrial operations with intelligent and driven approaches.However,IIoT devices are vulnerabl... Smart Industrial environments use the Industrial Internet of Things(IIoT)for their routine operations and transform their industrial operations with intelligent and driven approaches.However,IIoT devices are vulnerable to cyber threats and exploits due to their connectivity with the internet.Traditional signature-based IDS are effective in detecting known attacks,but they are unable to detect unknown emerging attacks.Therefore,there is the need for an IDS which can learn from data and detect new threats.Ensemble Machine Learning(ML)and individual Deep Learning(DL)based IDS have been developed,and these individual models achieved low accuracy;however,their performance can be improved with the ensemble stacking technique.In this paper,we have proposed a Deep Stacked Neural Network(DSNN)based IDS,which consists of two stacked Convolutional Neural Network(CNN)models as base learners and Extreme Gradient Boosting(XGB)as the meta learner.The proposed DSNN model was trained and evaluated with the next-generation dataset,TON_IoT.Several pre-processing techniques were applied to prepare a dataset for the model,including ensemble feature selection and the SMOTE technique.Accuracy,precision,recall,F1-score,and false positive rates were used to evaluate the performance of the proposed ensemble model.Our experimental results showed that the accuracy for binary classification is 99.61%,which is better than in the baseline individual DL and ML models.In addition,the model proposed for IDS has been compared with similar models.The proposed DSNN achieved better performance metrics than the other models.The proposed DSNN model will be used to develop enhanced IDS for threat mitigation in smart industrial environments. 展开更多
关键词 industrial internet of things smart industrial environment cyber-attacks convolutional neural network ensemble learning
下载PDF
An Efficient and Provably Secure SM2 Key-Insulated Signature Scheme for Industrial Internet of Things
4
作者 Senshan Ouyang Xiang Liu +3 位作者 Lei Liu Shangchao Wang Baichuan Shao Yang Zhao 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第1期903-915,共13页
With the continuous expansion of the Industrial Internet of Things(IIoT),more andmore organisations are placing large amounts of data in the cloud to reduce overheads.However,the channel between cloud servers and smar... With the continuous expansion of the Industrial Internet of Things(IIoT),more andmore organisations are placing large amounts of data in the cloud to reduce overheads.However,the channel between cloud servers and smart equipment is not trustworthy,so the issue of data authenticity needs to be addressed.The SM2 digital signature algorithm can provide an authentication mechanism for data to solve such problems.Unfortunately,it still suffers from the problem of key exposure.In order to address this concern,this study first introduces a key-insulated scheme,SM2-KI-SIGN,based on the SM2 algorithm.This scheme boasts strong key insulation and secure keyupdates.Our scheme uses the elliptic curve algorithm,which is not only more efficient but also more suitable for IIoT-cloud environments.Finally,the security proof of SM2-KI-SIGN is given under the Elliptic Curve Discrete Logarithm(ECDL)assumption in the random oracle. 展开更多
关键词 KEY-INSULATED SM2 algorithm digital signature industrial Internet of Things(IIoT) provable security
下载PDF
A Double-Timescale Reinforcement Learning Based Cloud-Edge Collaborative Framework for Decomposable Intelligent Services in Industrial Internet of Things
5
作者 Zhang Qiuyang Wang Ying Wang Xue 《China Communications》 SCIE CSCD 2024年第10期181-199,共19页
With the proportion of intelligent services in the industrial internet of things(IIoT)rising rapidly,its data dependency and decomposability increase the difficulty of scheduling computing resources.In this paper,we p... With the proportion of intelligent services in the industrial internet of things(IIoT)rising rapidly,its data dependency and decomposability increase the difficulty of scheduling computing resources.In this paper,we propose an intelligent service computing framework.In the framework,we take the long-term rewards of its important participants,edge service providers,as the optimization goal,which is related to service delay and computing cost.Considering the different update frequencies of data deployment and service offloading,double-timescale reinforcement learning is utilized in the framework.In the small-scale strategy,the frequent concurrency of services and the difference in service time lead to the fuzzy relationship between reward and action.To solve the fuzzy reward problem,a reward mapping-based reinforcement learning(RMRL)algorithm is proposed,which enables the agent to learn the relationship between reward and action more clearly.The large time scale strategy adopts the improved Monte Carlo tree search(MCTS)algorithm to improve the learning speed.The simulation results show that the strategy is superior to popular reinforcement learning algorithms such as double Q-learning(DDQN)and dueling Q-learning(dueling-DQN)in learning speed,and the reward is also increased by 14%. 展开更多
关键词 computing service edge intelligence industrial internet of things(IIoT) reinforcement learning(RL)
下载PDF
Energy Minimization for Heterogenous Traffic Coexistence with Puncturing in Mobile Edge Computing-Based Industrial Internet of Things
6
作者 Wang Xue Wang Ying +1 位作者 Fei Zixuan Zhao Junwei 《China Communications》 SCIE CSCD 2024年第10期167-180,共14页
Puncturing has been recognized as a promising technology to cope with the coexistence problem of enhanced mobile broadband(eMBB) and ultra-reliable low latency communications(URLLC)traffic. However, the steady perform... Puncturing has been recognized as a promising technology to cope with the coexistence problem of enhanced mobile broadband(eMBB) and ultra-reliable low latency communications(URLLC)traffic. However, the steady performance of eMBB traffic while meeting the requirements of URLLC traffic with puncturing is a major challenge in some realistic scenarios. In this paper, we pay attention to the timely and energy-efficient processing for eMBB traffic in the industrial Internet of Things(IIoT), where mobile edge computing(MEC) is employed for data processing. Specifically, the performance of eMBB traffic and URLLC traffic in a MEC-based IIoT system is ensured by setting the threshold of tolerable delay and outage probability, respectively. Furthermore,considering the limited energy supply, an energy minimization problem of eMBB device is formulated under the above constraints, by jointly optimizing the resource blocks(RBs) punctured by URLLC traffic, data offloading and transmit power of eMBB device. With Markov's inequality, the problem is reformulated by transforming the probabilistic outage constraint into a deterministic constraint. Meanwhile, an iterative energy minimization algorithm(IEMA) is proposed.Simulation results demonstrate that our algorithm has a significant reduction in the energy consumption for eMBB device and achieves a better overall effect compared to several benchmarks. 展开更多
关键词 energy minimization enhanced mobile broadband(eMBB)and ultra-reliable low latency communications(URLLC)coexistence industrial Internet of Things(IIoT) mobile edge computing(MEC) PUNCTURING
下载PDF
基于Ethernet-APL的新型工业控制系统设计
7
作者 李华军 王鸥 边文艺 《石油化工自动化》 CAS 2024年第3期5-8,共4页
两线制以太网Ethernet-APL通信技术,以其供电、高带宽、远距离、防爆设计成为目前工业领域最具潜力的现场通信技术,国内产业链正在积极推动Ethernet-APL芯片、仪表、交换机、控制系统的研发。从工业控制系统角度,提出了Ethernet-APL新... 两线制以太网Ethernet-APL通信技术,以其供电、高带宽、远距离、防爆设计成为目前工业领域最具潜力的现场通信技术,国内产业链正在积极推动Ethernet-APL芯片、仪表、交换机、控制系统的研发。从工业控制系统角度,提出了Ethernet-APL新型工业控制系统可能的应用场景以及与之匹配的系统架构。同时,也对该控制系统的网络负荷、实时性、网络冗余、仪表IP分配等关键技术提出了设计方案。随着该技术的推广,将会助力仪表智能化及工厂智能制造的实现。 展开更多
关键词 ethernet-APL技术 工业控制系统 分散控制系统 仪表IP分配 网络冗余
下载PDF
Smart contract token-based privacy-preserving access control system for industrial Internet of Things 被引量:1
8
作者 Weizheng Wang Huakun Huang +3 位作者 Zhimeng Yin Thippa Reddy Gadekallu Mamoun Alazab Chunhua Su 《Digital Communications and Networks》 SCIE CSCD 2023年第2期337-346,共10页
Due to mobile Internet technology's rapid popularization,the Industrial Internet of Things(IIoT)can be seen everywhere in our daily lives.While IIoT brings us much convenience,a series of security and scalability ... Due to mobile Internet technology's rapid popularization,the Industrial Internet of Things(IIoT)can be seen everywhere in our daily lives.While IIoT brings us much convenience,a series of security and scalability issues related to permission operations rise to the surface during device communications.Hence,at present,a reliable and dynamic access control management system for IIoT is in urgent need.Up till now,numerous access control architectures have been proposed for IIoT.However,owing to centralized models and heterogeneous devices,security and scalability requirements still cannot be met.In this paper,we offer a smart contract token-based solution for decentralized access control in IIoT systems.Specifically,there are three smart contracts in our system,including the Token Issue Contract(TIC),User Register Contract(URC),and Manage Contract(MC).These three contracts collaboratively supervise and manage various events in IIoT environments.We also utilize the lightweight and post-quantum encryption algorithm-Nth-degree Truncated Polynomial Ring Units(NTRU)to preserve user privacy during the registration process.Subsequently,to evaluate our proposed architecture's performance,we build a prototype platform that connects to the local blockchain.Finally,experiment results show that our scheme has achieved secure and dynamic access control for the IIoT system compared with related research. 展开更多
关键词 Blockchain Privacy preservation Smart contract industrial IoT
下载PDF
Intelligent Intrusion Detection System for Industrial Internet of Things Environment 被引量:1
9
作者 R.Gopi R.Sheeba +4 位作者 K.Anguraj T.Chelladurai Haya Mesfer Alshahrani Nadhem Nemri Tarek Lamoudan 《Computer Systems Science & Engineering》 SCIE EI 2023年第2期1567-1582,共16页
Rapid increase in the large quantity of industrial data,Industry 4.0/5.0 poses several challenging issues such as heterogeneous data generation,data sensing and collection,real-time data processing,and high request ar... Rapid increase in the large quantity of industrial data,Industry 4.0/5.0 poses several challenging issues such as heterogeneous data generation,data sensing and collection,real-time data processing,and high request arrival rates.The classical intrusion detection system(IDS)is not a practical solution to the Industry 4.0 environment owing to the resource limitations and complexity.To resolve these issues,this paper designs a new Chaotic Cuckoo Search Optimiza-tion Algorithm(CCSOA)with optimal wavelet kernel extreme learning machine(OWKELM)named CCSOA-OWKELM technique for IDS on the Industry 4.0 platform.The CCSOA-OWKELM technique focuses on the design of feature selection with classification approach to achieve minimum computation complex-ity and maximum detection accuracy.The CCSOA-OWKELM technique involves the design of CCSOA based feature selection technique,which incorpo-rates the concepts of chaotic maps with CSOA.Besides,the OWKELM technique is applied for the intrusion detection and classification process.In addition,the OWKELM technique is derived by the hyperparameter tuning of the WKELM technique by the use of sunflower optimization(SFO)algorithm.The utilization of CCSOA for feature subset selection and SFO algorithm based hyperparameter tuning leads to better performance.In order to guarantee the supreme performance of the CCSOA-OWKELM technique,a wide range of experiments take place on two benchmark datasets and the experimental outcomes demonstrate the promis-ing performance of the CCSOA-OWKELM technique over the recent state of art techniques. 展开更多
关键词 Intrusion detection system artificial intelligence machine learning industry 4.0 internet of things
下载PDF
基于Profinet通信协议的多电机运行监控系统设计
10
作者 赵安 马彬彬 《机械制造与自动化》 2024年第5期239-241,共3页
随着工业互联网逐步渗透到工业制造各大领域,工业企业迫切需要通过工业互联网加快数字化步伐,以提高生产效率,节省设备运维成本,满足客户个性化需求。研究在工业互联网中通过Profinet通信协议将西门子S7-1200、HMI和G120变频器等设备联... 随着工业互联网逐步渗透到工业制造各大领域,工业企业迫切需要通过工业互联网加快数字化步伐,以提高生产效率,节省设备运维成本,满足客户个性化需求。研究在工业互联网中通过Profinet通信协议将西门子S7-1200、HMI和G120变频器等设备联网组成异步电动机变频调速监控网络。研究内容包括控制系统硬件构成、变频器参数设置和PLC控制程序设计。该控制系统运行能完全融入工业互联网,且监控方便、成本低廉。 展开更多
关键词 工业互联网 PROFInet S7-1200PLC G120变频器 HMI
下载PDF
How AI-enabled SDN technologies improve the security and functionality of industrial IoT network:Architectures,enabling technologies,and opportunities
11
作者 Jinfang Jiang Chuan Lin +3 位作者 Guangjie Han Adnan MAbu-Mahfouz Syed Bilal Hussain Shah Miguel Martínez-García 《Digital Communications and Networks》 SCIE CSCD 2023年第6期1351-1362,共12页
The ongoing expansion of the Industrial Internet of Things(IIoT)is enabling the possibility of effective Industry 4.0,where massive sensing devices in heterogeneous environments are connected through dedicated communi... The ongoing expansion of the Industrial Internet of Things(IIoT)is enabling the possibility of effective Industry 4.0,where massive sensing devices in heterogeneous environments are connected through dedicated communication protocols.This brings forth new methods and models to fuse the information yielded by the various industrial plant elements and generates emerging security challenges that we have to face,providing ad-hoc functions for scheduling and guaranteeing the network operations.Recently,the large development of SoftwareDefined Networking(SDN)and Artificial Intelligence(AI)technologies have made feasible the design and control of scalable and secure IIoT networks.This paper studies how AI and SDN technologies combined can be leveraged towards improving the security and functionality of these IIoT networks.After surveying the state-of-the-art research efforts in the subject,the paper introduces a candidate architecture for AI-enabled Software-Defined IIoT Network(AI-SDIN)that divides the traditional industrial networks into three functional layers.And with this aim in mind,key technologies(Blockchain-based Data Sharing,Intelligent Wireless Data Sensing,Edge Intelligence,Time-Sensitive Networks,Integrating SDN&TSN,Distributed AI)and improve applications based on AISDIN are also discussed.Further,the paper also highlights new opportunities and potential research challenges in control and automation of IIoT networks. 展开更多
关键词 industrial internet of things(IIoT) Industry 4.0 Artificial intelligence(AI) Machine intelligence Software-defined networking(SDN)
下载PDF
Standardization of Fieldbus and Industrial Ethernet 被引量:1
12
作者 CHEN Jinghe ZHANG Hesheng 《ZTE Communications》 2019年第2期51-58,共8页
Fieldbus and industrial Ethernet standards can guide the specification andcoordinate bus optimization. The standards are the basis for the development of field-bus and industrial Ethernet. In this paper, we review com... Fieldbus and industrial Ethernet standards can guide the specification andcoordinate bus optimization. The standards are the basis for the development of field-bus and industrial Ethernet. In this paper, we review complex standard systems allover the world. We discuss 18 fieldbus standards, including the International Electro-technical Commission(IEC) 61158, the IEC 61784 standard matched with IEC 61158,the controller and device interface standard IEC 62026 for low voltage distributionand control devices, and the International Organization for Standardization(ISO)11898 and ISO 11519 standards related to the controller area network(CAN) bus. Wealso introduce the standards of China, Europe, Japan and America. This paper pro-vides a reference to develop fieldbus and industrial Ethernet products for Chinese en-terprises. 展开更多
关键词 FIELDBUS industrial ethernet STANDARD
下载PDF
Anomaly Detection for Industrial Internet of Things Cyberattacks
13
作者 Rehab Alanazi Ahamed Aljuhani 《Computer Systems Science & Engineering》 SCIE EI 2023年第3期2361-2378,共18页
The evolution of the Internet of Things(IoT)has empowered modern industries with the capability to implement large-scale IoT ecosystems,such as the Industrial Internet of Things(IIoT).The IIoT is vulnerable to a diver... The evolution of the Internet of Things(IoT)has empowered modern industries with the capability to implement large-scale IoT ecosystems,such as the Industrial Internet of Things(IIoT).The IIoT is vulnerable to a diverse range of cyberattacks that can be exploited by intruders and cause substantial reputational andfinancial harm to organizations.To preserve the confidentiality,integrity,and availability of IIoT networks,an anomaly-based intrusion detection system(IDS)can be used to provide secure,reliable,and efficient IIoT ecosystems.In this paper,we propose an anomaly-based IDS for IIoT networks as an effective security solution to efficiently and effectively overcome several IIoT cyberattacks.The proposed anomaly-based IDS is divided into three phases:pre-processing,feature selection,and classification.In the pre-processing phase,data cleaning and nor-malization are performed.In the feature selection phase,the candidates’feature vectors are computed using two feature reduction techniques,minimum redun-dancy maximum relevance and neighborhood components analysis.For thefinal step,the modeling phase,the following classifiers are used to perform the classi-fication:support vector machine,decision tree,k-nearest neighbors,and linear discriminant analysis.The proposed work uses a new data-driven IIoT data set called X-IIoTID.The experimental evaluation demonstrates our proposed model achieved a high accuracy rate of 99.58%,a sensitivity rate of 99.59%,a specificity rate of 99.58%,and a low false positive rate of 0.4%. 展开更多
关键词 Anomaly detection anomaly-based IDS industrial Internet of Things(IIoT) IOT industrial control systems(ICSs) X-IIoTID
下载PDF
IEEE1588 Time Synchronizing System Multiplexing Industrial Ethernet of Distribution Automation 被引量:2
14
作者 Shuwei Feng Meiyi Hou +5 位作者 Guofang Zhu Qi Qi Richang Xian Tao Jiang Ying Zhai Ming Sun 《Journal of Power and Energy Engineering》 2014年第4期252-258,共7页
The present study explores an IEEE1588 Synchronizing System for smart distribution grid based on Industrial Ethernet. The paper first analyzes the communication system in distribution network and then proposed the pro... The present study explores an IEEE1588 Synchronizing System for smart distribution grid based on Industrial Ethernet. The paper first analyzes the communication system in distribution network and then proposed the project of time synchronizing system using IEEE1588 in distribution network. The study focuses on rational clock correcting time region segmentation, selecting the best clock source injection point and multiple redundant methods when correcting time method lose efficacy, etc. The precision of time synchronizing is better than that of 1 millisecond. 展开更多
关键词 IEEE1588 Distribution netWORK Communication netWORK industrial ethernet TIME Synchronization
下载PDF
Edge Computing Task Scheduling with Joint Blockchain and Task Caching in Industrial Internet
15
作者 Yanping Chen Xuyang Bai +3 位作者 Xiaomin Jin Zhongmin Wang Fengwei Wang Li Ling 《Computers, Materials & Continua》 SCIE EI 2023年第4期2101-2117,共17页
Deploying task caching at edge servers has become an effectiveway to handle compute-intensive and latency-sensitive tasks on the industrialinternet. However, how to select the task scheduling location to reduce taskde... Deploying task caching at edge servers has become an effectiveway to handle compute-intensive and latency-sensitive tasks on the industrialinternet. However, how to select the task scheduling location to reduce taskdelay and cost while ensuring the data security and reliable communicationof edge computing remains a challenge. To solve this problem, this paperestablishes a task scheduling model with joint blockchain and task cachingin the industrial internet and designs a novel blockchain-assisted cachingmechanism to enhance system security. In this paper, the task schedulingproblem, which couples the task scheduling decision, task caching decision,and blockchain reward, is formulated as the minimum weighted cost problemunder delay constraints. This is a mixed integer nonlinear problem, which isproved to be nonconvex and NP-hard. To solve the optimal solution, thispaper proposes a task scheduling strategy algorithm based on an improvedgenetic algorithm (IGA-TSPA) by improving the genetic algorithm initializationand mutation operations to reduce the size of the initial solutionspace and enhance the optimal solution convergence speed. In addition,an Improved Least Frequently Used algorithm is proposed to improve thecontent hit rate. Simulation results show that IGA-TSPA has a faster optimalsolution-solving ability and shorter running time compared with the existingedge computing scheduling algorithms. The established task scheduling modelnot only saves 62.19% of system overhead consumption in comparison withlocal computing but also has great significance in protecting data security,reducing task processing delay, and reducing system cost. 展开更多
关键词 Edge computing task scheduling blockchain task caching industrial security
下载PDF
AID4I:An Intrusion Detection Framework for Industrial Internet of Things Using Automated Machine Learning
16
作者 Anil Sezgin Aytug Boyacı 《Computers, Materials & Continua》 SCIE EI 2023年第8期2121-2143,共23页
By identifying and responding to any malicious behavior that could endanger the system,the Intrusion Detection System(IDS)is crucial for preserving the security of the Industrial Internet of Things(IIoT)network.The be... By identifying and responding to any malicious behavior that could endanger the system,the Intrusion Detection System(IDS)is crucial for preserving the security of the Industrial Internet of Things(IIoT)network.The benefit of anomaly-based IDS is that they are able to recognize zeroday attacks due to the fact that they do not rely on a signature database to identify abnormal activity.In order to improve control over datasets and the process,this study proposes using an automated machine learning(AutoML)technique to automate the machine learning processes for IDS.Our groundbreaking architecture,known as AID4I,makes use of automatic machine learning methods for intrusion detection.Through automation of preprocessing,feature selection,model selection,and hyperparameter tuning,the objective is to identify an appropriate machine learning model for intrusion detection.Experimental studies demonstrate that the AID4I framework successfully proposes a suitablemodel.The integrity,security,and confidentiality of data transmitted across the IIoT network can be ensured by automating machine learning processes in the IDS to enhance its capacity to identify and stop threatening activities.With a comprehensive solution that takes advantage of the latest advances in automated machine learning methods to improve network security,AID4I is a powerful and effective instrument for intrusion detection.In preprocessing module,three distinct imputation methods are utilized to handle missing data,ensuring the robustness of the intrusion detection system in the presence of incomplete information.Feature selection module adopts a hybrid approach that combines Shapley values and genetic algorithm.The Parameter Optimization module encompasses a diverse set of 14 classification methods,allowing for thorough exploration and optimization of the parameters associated with each algorithm.By carefully tuning these parameters,the framework enhances its adaptability and accuracy in identifying potential intrusions.Experimental results demonstrate that the AID4I framework can achieve high levels of accuracy in detecting network intrusions up to 14.39%on public datasets,outperforming traditional intrusion detection methods while concurrently reducing the elapsed time for training and testing. 展开更多
关键词 Automated machine learning intrusion detection system industrial internet of things parameter optimization
下载PDF
An Efficient Intrusion Detection Framework for Industrial Internet of Things Security
17
作者 Samah Alshathri Ayman El-Sayed +1 位作者 Walid El-Shafai Ezz El-Din Hemdan 《Computer Systems Science & Engineering》 SCIE EI 2023年第7期819-834,共16页
Recently,the Internet of Things(IoT)has been used in various applications such as manufacturing,transportation,agriculture,and healthcare that can enhance efficiency and productivity via an intelligent management cons... Recently,the Internet of Things(IoT)has been used in various applications such as manufacturing,transportation,agriculture,and healthcare that can enhance efficiency and productivity via an intelligent management console remotely.With the increased use of Industrial IoT(IIoT)applications,the risk of brutal cyber-attacks also increased.This leads researchers worldwide to work on developing effective Intrusion Detection Systems(IDS)for IoT infrastructure against any malicious activities.Therefore,this paper provides effective IDS to detect and classify unpredicted and unpredictable severe attacks in contradiction to the IoT infrastructure.A comprehensive evaluation examined on a new available benchmark TON_IoT dataset is introduced.The data-driven IoT/IIoT dataset incorporates a label feature indicating classes of normal and attack-targeting IoT/IIoT applications.Correspondingly,this data involves IoT/IIoT services-based telemetry data that involves operating systems logs and IoT-based traffic networks collected from a realistic medium-scale IoT network.This is to classify and recognize the intrusion activity and provide the intrusion detection objectives in IoT environments in an efficient fashion.Therefore,several machine learning algorithms such as Logistic Regression(LR),Linear Discriminant Analysis(LDA),K-Nearest Neighbors(KNN),Gaussian Naive Bayes(NB),Classification and Regression Tree(CART),Random Forest(RF),and AdaBoost(AB)are used for the detection intent on thirteen different intrusion datasets.Several performance metrics like accuracy,precision,recall,and F1-score are used to estimate the proposed framework.The experimental results show that the CART surpasses the other algorithms with the highest accuracy values like 0.97,1.00,0.99,0.99,1.00,1.00,and 1.00 for effectively detecting the intrusion activities on the IoT/IIoT infrastructure on most of the employed datasets.In addition,the proposed work accomplishes high performance compared to other recent related works in terms of different security and detection evaluation parameters. 展开更多
关键词 ATTACKS intrusion detection machine learning deep learning industrial IoT TON_IoT dataset
下载PDF
S7-1500与V90 PN通过PROFINET实现运动控制
18
作者 张学辉 《机械工程与自动化》 2024年第5期166-168,共3页
在深入研究支持工业以太网PROFINET的PLC与伺服驱动器之间通信的基础上,选择西门子的中高端PLC S7-1500及新品伺服驱动器V90 PN、伺服电机S-1FL6搭建了运动控制系统,并选择西门子精智面板TP700作为人机交互系统。介绍了运动控制系统的... 在深入研究支持工业以太网PROFINET的PLC与伺服驱动器之间通信的基础上,选择西门子的中高端PLC S7-1500及新品伺服驱动器V90 PN、伺服电机S-1FL6搭建了运动控制系统,并选择西门子精智面板TP700作为人机交互系统。介绍了运动控制系统的系统构成、伺服驱动器配置、PLC硬件及通信组态、触摸屏组态、PLC程序设计等。对运动控制系统的研究可应用于工程的实际现场设备或高等学校的实训设备,具有一定的实用价值。 展开更多
关键词 工业以太网 伺服驱动器 通信 运动控制系统
下载PDF
Optimal Deep Learning Based Intruder Identification in Industrial Internet of Things Environment
19
作者 Khaled M.Alalayah Fatma S.Alrayes +5 位作者 Jaber S.Alzahrani Khadija M.Alaidarous Ibrahim M.Alwayle Heba Mohsen Ibrahim Abdulrab Ahmed Mesfer Al Duhayyim 《Computer Systems Science & Engineering》 SCIE EI 2023年第9期3121-3139,共19页
With the increased advancements of smart industries,cybersecurity has become a vital growth factor in the success of industrial transformation.The Industrial Internet of Things(IIoT)or Industry 4.0 has revolutionized ... With the increased advancements of smart industries,cybersecurity has become a vital growth factor in the success of industrial transformation.The Industrial Internet of Things(IIoT)or Industry 4.0 has revolutionized the concepts of manufacturing and production altogether.In industry 4.0,powerful IntrusionDetection Systems(IDS)play a significant role in ensuring network security.Though various intrusion detection techniques have been developed so far,it is challenging to protect the intricate data of networks.This is because conventional Machine Learning(ML)approaches are inadequate and insufficient to address the demands of dynamic IIoT networks.Further,the existing Deep Learning(DL)can be employed to identify anonymous intrusions.Therefore,the current study proposes a Hunger Games Search Optimization with Deep Learning-Driven Intrusion Detection(HGSODLID)model for the IIoT environment.The presented HGSODL-ID model exploits the linear normalization approach to transform the input data into a useful format.The HGSO algorithm is employed for Feature Selection(HGSO-FS)to reduce the curse of dimensionality.Moreover,Sparrow Search Optimization(SSO)is utilized with a Graph Convolutional Network(GCN)to classify and identify intrusions in the network.Finally,the SSO technique is exploited to fine-tune the hyper-parameters involved in the GCN model.The proposed HGSODL-ID model was experimentally validated using a benchmark dataset,and the results confirmed the superiority of the proposed HGSODL-ID method over recent approaches. 展开更多
关键词 industrial IoT deep learning network security intrusion detection system attribute selection smart factory
下载PDF
“NET三维联动”产教融合外语人才培养中的课程思政实施路径
20
作者 王鸿雁 杨慧玲 +2 位作者 张涛 郭明 王兴华 《牡丹江师范学院学报(社会科学版)》 2024年第1期94-96,共3页
“NET三维联动”产教融合应用型外语人才培养模式,可通过“课内与课外、学校与企业、校内导师与企业导师”三维联动,将课程思政教育和外语专业实践能力培养从课堂延展到课外活动、社会实践、企业服务,建立网络资源库(Network),向合作企... “NET三维联动”产教融合应用型外语人才培养模式,可通过“课内与课外、学校与企业、校内导师与企业导师”三维联动,将课程思政教育和外语专业实践能力培养从课堂延展到课外活动、社会实践、企业服务,建立网络资源库(Network),向合作企业开展志愿外语翻译服务(Enterprise),校内外双导师(Tutor)共同培养应用型外语人才。 展开更多
关键词 net 三维联动 产教融合 课程思政 外语人才培养
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部