期刊文献+
共找到7篇文章
< 1 >
每页显示 20 50 100
Review of the fabrication and application of porous materials from silicon-rich industrial solid waste 被引量:12
1
作者 Chao Miao Lixing Liang +5 位作者 Fan Zhang Shumei Chen Kaixuan Shang Jinlong Jiang Yi Zhang Jing Ouyang 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2022年第3期424-438,共15页
Porous materials have promise as sound insulation, heat barrier, vibration attenuation, and catalysts. Most industrial solid wastes, such as tailings, coal gangue, and fly ash are rich in silicon. Additionally, a high... Porous materials have promise as sound insulation, heat barrier, vibration attenuation, and catalysts. Most industrial solid wastes, such as tailings, coal gangue, and fly ash are rich in silicon. Additionally, a high silicon content waste is a potential raw material for the syn- thesis of silicon-based, multi-porous materials such as zeolites, mesoporous silica, glass-ceramics, and geopolymer foams. Representative sil- icon-rich industrial solid wastes (SRISWs) are the focus of this mini review of the processing and application of porous silicon materials with respect to the physical and chemical properties of the SRISW. The transformation methods of preparing porous materials from SRISWs are summarized, and their research status in micro-, meso-, and macro-scale porous materials are described. Possible problems in the application of SRISWs and in the preparation of functional porous materials are analyzed, and their development prospects are discussed. This review should provide a typical reference for the recycling and use of industrial solid wastes to develop sustainable “green materials.” 展开更多
关键词 silicon-rich industrial solid waste porous materials physicochemical properties material utilization of solid wastes
下载PDF
Industrial solid waste flow analysis of eco-industrial parks: implications for sustainable waste management in China 被引量:1
2
作者 Yongpeng LU Kai YANG +3 位作者 Yue CHE Zhaoyi SHANG Jun TAI Yun JIAN 《Frontiers of Environmental Science & Engineering》 SCIE EI CAS CSCD 2012年第4期575-587,共13页
Sustainable waste management in the industrial ecology perspective brings enormous challenges to the existing methodology of waste analysis at the industrial park (IP) scale. In this study, a four-step method was pr... Sustainable waste management in the industrial ecology perspective brings enormous challenges to the existing methodology of waste analysis at the industrial park (IP) scale. In this study, a four-step method was proposed for industrial solid waste (ISW) flow analysis of eco-industrial parks (EIPs) and applied to two IPs in eastern China. According to a park-wide census of 619 industrial enterprises and 105 questionnaires by a survey from 2006 to 2008, the results indicated that: 1) at the enterprise scale, more than 60% of enterprises were small- ISW-generation enterprises which encountered great difficulties on effective waste management; 2) at the IP scale, though the two IPs have set up their own environmental management systems and passed the ISO 14001 certification, the efficiencies of the ISW manage- ment systems have yet to be improved in the industrial ecology perspective; and 3) at the regional scale, more than 97% of ISW flowed within the provincial region, indicating that the provincial governments prevented the wastes from flowing into their own "back yard". Effective waste management should be placed in a broader perspective. Approaches to sustainable waste management may include wastes exchange, efficient waste and information flow, virtual EIP, waste minimization clubs and regionalization of waste management. 展开更多
关键词 industrial solid waste waste flow analysis eco-industrial parks sustainable waste management "not in my back yard"
原文传递
Bird’s-eye view of recycled solid wastes in road engineering
3
作者 Zhuangzhuang Liu Tengteng Feng +5 位作者 Xingyi Zhu Jie Gao Kui Hu Meng Guo Fan Gu Feng Li 《Journal of Road Engineering》 2024年第2期93-150,共58页
Recent trends in road engineering have explored the potential of incorporating recycled solid wastes into infrastructures that including pavements,bridges,tunnels,and accessory structures.The utilization of solid wast... Recent trends in road engineering have explored the potential of incorporating recycled solid wastes into infrastructures that including pavements,bridges,tunnels,and accessory structures.The utilization of solid wastes is expected to offer sustainable solutions to waste recycling while enhancing the performance of roads.This review provides an extensive analysis of the recycling of three main types of solid wastes for road engineering purposes:industrial solid waste,infrastructure solid waste,and municipal life solid waste.Industrial solid wastes suitable for road engineering generally include coal gangue,fly ash,blast furnace slag,silica fume,and steel slag,etc.Infrastructure solid wastes recycled in road engineering primarily consist of construction&demolition waste,reclaimed asphalt pavements,and recycled cement concrete.Furthermore,recent exploration has extended to the utilization of municipal life solid wastes,such as incinerated bottom ash,glass waste,electronics waste,plastic waste,and rubber waste in road engineering applications.These recycled solid wastes are categorized into solid waste aggregates,solid waste cements,and solid waste fillers,each playing distinct roles in road infrastructure.Roles of solid waste acting aggregates,cements,and fillers in road infrastructures were fully investigated,including their pozzolanic properties,integration effects to virgin materials,modification or enhancement solutions,engineering performances.Utilization of these materials not only addresses the challenge of waste management but also offers environmental benefits aiming carbon neutral and contributes to sustainable infrastructure development.However,challenges such as variability in material properties,environmental impact mitigation,secondary pollution to environment by leaching,and concerns regarding long-term performance need to be further addressed.Despite these challenges,the recycled solid wastes hold immense potential in revolutionizing road construction practices and fostering environmental stewardship.This review delves into a bird’seye view of the utilization of recycled solid wastes in road engineering,highlighting advances,benefits,challenges,and future prospects. 展开更多
关键词 Road engineering industrial solid waste Infrastructure solid waste Municipal life waste Recycled materials
下载PDF
Environmental risk assessment of industrial byproduct gypsum utilized for flling abandoned mines
4
作者 XueHong Du Xiangdong Li +2 位作者 Qiyan Feng Lei Meng Yue Sun 《International Journal of Coal Science & Technology》 EI CAS CSCD 2022年第4期214-225,共12页
In response to the basic policy of green and low-carbon circular development to solve resource,environmental and ecological problems,gypsum is considered to be a flling material for mine backflling.To explore the pote... In response to the basic policy of green and low-carbon circular development to solve resource,environmental and ecological problems,gypsum is considered to be a flling material for mine backflling.To explore the potential risks of gypsum to the groundwater environment due to the backflling of abandoned mines,a sequential batch leaching experiment was carried out in this paper,which used three types of industrial waste gypsum,namely,phosphorus gypsum(PG),titanium gypsum(TG)and fue gas desulfurization gypsum(FGDG).COMSOL Multiphysics 5.4 software was used to simulate and solve the migration process of the leached metal elements in the mine foor when these three gypsum types were used as flling materials to observe the concentration distributions and difusion distances of the metal elements from these three gypsum types in the mine foor.The results show that(1)during repeated contact of the three types of industrial waste gypsum with the leaching medium,the pH levels changed,and the changes in pH afected the leaching patterns for the heavy metal elements in the gypsum.(2)Based on the concentrations of the metal elements that were leached from the three types of gypsum,it can be determined that these three types of gypsum are not classifed as hazardous solid wastes,but they cannot be ruled out with regard to their risk to the groundwater environment when they are used as mine flling materials.(3)When the three types of gypsum are used as flling materials,the concentration distributions of the metal elements and their migration distances all exhibit signifcant changes over time.The concentration distributions,difusion rates and migration distances of the metal elements from the diferent gypsum types are afected by their initial concentrations in the leachate.The maximum migration distances of Zn in the foor from the PG,FGDG and TG are 8.2,8.1 and 7.5 m,respectively. 展开更多
关键词 industrial solid waste gypsum Coal mine back-flling Leaching of metal elements Patterns of migration
下载PDF
Environmental risk for application of ammonia-soda white mud in soils in China 被引量:6
5
作者 WANG Xiao-bin YAN Xiang LI Xiu-ying 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2020年第3期601-611,共11页
In recent years,some reports,mainly from Chinese research,show that there has been an increasing trend in the use of ammonia-soda residue(ASR)(or called ammonia-soda white mud) as a soil conditioner in farmlands.Up to... In recent years,some reports,mainly from Chinese research,show that there has been an increasing trend in the use of ammonia-soda residue(ASR)(or called ammonia-soda white mud) as a soil conditioner in farmlands.Up to now,the studies on ASR have focused on its utilization for acid soil amendment in agriculture,but few studies have assessed its environmental risk.ASR contains pollutant elements such as mercury(Hg),cadmium(Cd),copper(Cu) and fluorine(F) and the purpose of this study was to review research on the environmental impacts of ASR application in agriculture.Observations obtained from 23 research reports indicate that the concentrations of Hg,Cd,Cu,F and Cl(0-170,0.01-2.8,4.5-200,2000-24700 and 1 600-188 000 mg kg^-1,respectively) in ASR may exceed the limits(≤0.5,≤0.3 and ≤50 mg kg^-1 for Hg,Cd and Cu,respectively) of Chinese Risk Screening Values for Soil Contamination of Agricultural Land(GB 15618-2018 2018) or the refereed critical value(≤800 and ≤200 mg kg^-1 for F and Cl,respectively) based on Chinese research.The concentrations of the elements Hg,Cd,Cu,F and Cl in the leachate of ASR detected by the extraction tests also exceed the limits(Class IV-V) of the Chinese Standard for Groundwater Quality(GB/T 14848-2017 2017).Based on the above results,it is suggested that ASR without any pretreatment for reducing harmful pollutants should not be used for soil remediation or conditioning of farmlands,to ensure soil health,food safety and environmental quality. 展开更多
关键词 environmental safety risk heavy metals industrial solid wastes ammonia-soda white mud ammonia-soda residue
下载PDF
Environmental risks for application of iron and steel slags in soils in China: A review 被引量:16
6
作者 Xiaobin WANG Xiuying LI +2 位作者 Xiang YAN Cheng TU Zhaoguo YU 《Pedosphere》 SCIE CAS CSCD 2021年第1期28-42,共15页
Iron and steel slags are smelting wastes, mainly including blast furnace slag(BFS) and steel slag(SS) produced in the iron and steel industry. Utilization of iron and steel slags as resources for solving the problem o... Iron and steel slags are smelting wastes, mainly including blast furnace slag(BFS) and steel slag(SS) produced in the iron and steel industry. Utilization of iron and steel slags as resources for solving the problem of slag disposals has attracted much attention with increasing iron and steel smelting slags in China. Because the iron and steel slags contain calcium(Ca), magnesium(Mg), phosphorus(P), and silicon(Si), some have tried to use them as Si-and P-fertilizers, for producing Ca-Mg-P fertilizers, or as soil amendments in agriculture. However, in the iron metallurgical process, several pollutants in iron ores can inevitably transfer into iron and steel slags, resulting in the enrichment of pollutants both in BFS(mainly nickel(Ni), copper(Cu), mercury, zinc(Zn),cadmium(Cd), chromium(Cr), arsenic, lead, selenium, fluorine(F), and chlorine(Cl)) and in SS(mainly Ni, Cr, Cd, Zn, Cu, F, and Cl), in which some of pollutants(especially Cr, Ni, F, and Cl) exceed the limits of environmental quality standards for soils and groundwater. The elements of manganese, barium,and vanadium in iron and steel slags are higher than the background values of soil environment. In order to ensure soil health, food safety, and environmental quality, it is suggested that those industrial solid wastes, such as iron and steel slags, without any pretreatment for reducing harmful pollutants and with environmental safety risk, should not be allowed to use for soil remediation or conditioning directly in farmlands by solid waste disposal methods, to prevent pollutants from entering food chain and harming human health. 展开更多
关键词 blast furnace slag environmental safety risk heavy metal industrial solid waste iron and steel industry soil pollution
原文传递
Biogas and its opportunities——A review 被引量:7
7
作者 Panagiotis G. Kougias Irini Angelidaki 《Frontiers of Environmental Science & Engineering》 SCIE EI CAS CSCD 2018年第3期1-12,共12页
Biogas production is a well-established technology primarily for the generation of renewable energy and also for the valorization of organic residues. Biogas is the end product of a biological mediated process, the so... Biogas production is a well-established technology primarily for the generation of renewable energy and also for the valorization of organic residues. Biogas is the end product of a biological mediated process, the so called anaerobic digestion, in which different microorganisms, follow diverse metabolic pathways to decompose the organic matter. The process has been known since ancient times and was widely applied at domestic households providing heat and power for hundreds of years. Nowadays, the biogas sector is rapidly growing and novel achievements create the foundation for constituting biogas plants as advanced bioenergy factories. In this context, the biogas plants are the basis of a circular economy concept targeting nutrients recycling, reduction of greenhouse gas emissions and biorefinery purposes. This review summarizes the current state-of-the-art and presents future perspectives related to the anaerobic digestion process for biogas production. Moreover, a historical retrospective of biogas sector from the early years of its development till its recent advancements gives an outlook of the opportunities that are opening up for process optimisation. 展开更多
关键词 Anaerobic digestion Biogas Biowastes solid waste Manure industrial waste
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部