The reliability and real time of industrial wireless sensor networks (IWSNs) are the absolute requirements for industrial systems, which are two fore- most obstacles for the large-scale applications of IWSNs. This p...The reliability and real time of industrial wireless sensor networks (IWSNs) are the absolute requirements for industrial systems, which are two fore- most obstacles for the large-scale applications of IWSNs. This paper studies the multi-objective node placement problem to guarantee the reliability and real time of IWSNs from the perspective of systems. A novel multi-objective node deployment model is proposed in which the reliabil- ity, real time, costs and scalability of IWSNs are addressed. Considering that the optimal node placement is an NP-hard problem, a new multi-objective binary differential evolu- tion harmony search (MOBDEHS) is developed to tackle it, which is inspired by the mechanism of harmony search and differential evolution. Three large-scale node deploy- ment problems are generated as the benCHmarks to verify the proposed model and algorithm. The experimental results demonstrate that the developed model is valid and can be used to design large-scale IWSNs with guaranteed reliability and real-time performance efficiently. Moreover, the comparison results indicate that the proposed MOB- DEHS is an effective tool for multi-objective node place- ment problems and superior to Pareto-based binary differential evolution algorithms, nondominated sorting genetic algorithm II (NSGA-II) and modified NSGA-II.展开更多
Energy supply is one of the most critical challenges of wireless sensor networks(WSNs)and industrial wireless sensor networks(IWSNs).While research on coverage optimization problem(COP)centers on the network’s monito...Energy supply is one of the most critical challenges of wireless sensor networks(WSNs)and industrial wireless sensor networks(IWSNs).While research on coverage optimization problem(COP)centers on the network’s monitoring coverage,this research focuses on the power banks’energy supply coverage.The study of 2-D and 3-D spaces is typical in IWSN,with the realistic environment being more complex with obstacles(i.e.,machines).A 3-D surface is the field of interest(FOI)in this work with the established hybrid power bank deployment model for the energy supply COP optimization of IWSN.The hybrid power bank deployment model is highly adaptive and flexible for new or existing plants already using the IWSN system.The model improves the power supply to a more considerable extent with the least number of power bank deployments.The main innovation in this work is the utilization of a more practical surface model with obstacles and training while improving the convergence speed and quality of the heuristic algorithm.An overall probabilistic coverage rate analysis of every point on the FOI is provided,not limiting the scope to target points or areas.Bresenham’s algorithm is extended from 2-D to 3-D surface to enhance the probabilistic covering model for coverage measurement.A dynamic search strategy(DSS)is proposed to modify the artificial bee colony(ABC)and balance the exploration and exploitation ability for better convergence toward eliminating NP-hard deployment problems.Further,the cellular automata(CA)is utilized to enhance the convergence speed.The case study based on two typical FOI in the IWSN shows that the CA scheme effectively speeds up the optimization process.Comparative experiments are conducted on four benchmark functions to validate the effectiveness of the proposed method.The experimental results show that the proposed algorithm outperforms the ABC and gbest-guided ABC(GABC)algorithms.The results show that the proposed energy coverage optimization method based on the hybrid power bank deployment model generates more accurate results than the results obtained by similar algorithms(i.e.,ABC,GABC).The proposed model is,therefore,effective and efficient for optimization in the IWSN.展开更多
Ultra-reliable and low-latency communications(URLLC) has become a fundamental focus of future industrial wireless sensor net-works(IWSNs). With the evolution of automation and process control in industrial environment...Ultra-reliable and low-latency communications(URLLC) has become a fundamental focus of future industrial wireless sensor net-works(IWSNs). With the evolution of automation and process control in industrial environments, the need for increased reliabilityand reduced latencies in wireless communications is even pronounced. Furthermore, the 5G systems specifically target the URLLCin selected areas and industrial automation might turn into a suitable venue for future IWSNs, running 5G as a high speed inter-process linking technology. In this paper, a hybrid multi-channel scheme for performance and throughput enhancement of IWSNsis proposed. The scheme utilizes the multiple frequency channels to increase the overall throughput of the system along with theincrease in reliability. A special purpose frequency channel is defined, which facilitates the failed communications by retransmis-sions where the retransmission slots are allocated according to the priority level of failed communications of different nodes. Ascheduler is used to formulate priority based scheduling for retransmission in TDMA based communication slots of this channel.Furthermore, in carrier-sense multiple access with collision avoidance(CSMA/CA) based slots, a frequency polling is introducedto limit the collisions. Mathematical modelling for performance metrics is also presented. The performance of the proposed schemeis compared with that of IEEE802.15.4e, where the performance is evaluated on the basis of throughput, reliability and the num-ber of nodes accommodated in a cluster. The proposed scheme offers a notable increase in the reliability and throughput over theexisting IEEE802.15.4e Low Latency Deterministic Networks(LLDN) standard.展开更多
Industrial wireless sensor networks adopt a hierarchical structure with large numbers of sensors and routers. Time Division Multiple Access (TDMA) is regarded as an efficient method to reduce the probability of confli...Industrial wireless sensor networks adopt a hierarchical structure with large numbers of sensors and routers. Time Division Multiple Access (TDMA) is regarded as an efficient method to reduce the probability of confliction. In the intra-cluster part, the random color selection method is effective in reducing the retry times in an application. In the inter-cluster part, a quick assign algorithm and a dynamic maximum link algorithm are proposed to meet the quick networking or minimum frame size requirements. In the simulation, the dynamic maximum link algorithm produces higher reductions in the frame length than the quick assign algorithm. When the number of routers is 140, the total number of time slots is reduced by 25%. However, the first algorithm needs more control messages, and the average difference in the number of control messages is 3 410. Consequently, the dynamic maximum link algorithm is utilized for adjusting the link schedule to the minimum delay with a relatively high throughput rate, and the quick assign algorithm is utilized for speeding up the networking process.展开更多
As an Industrial Wireless Sensor Network(IWSN)is usually deployed in a harsh or unattended environment,the privacy security of data aggregation is facing more and more challenges.Currently,the data aggregation protoco...As an Industrial Wireless Sensor Network(IWSN)is usually deployed in a harsh or unattended environment,the privacy security of data aggregation is facing more and more challenges.Currently,the data aggregation protocols mainly focus on improving the efficiency of data transmitting and aggregating,alternately,the aim at enhancing the security of data.The performances of the secure data aggregation protocols are the trade-off of several metrics,which involves the transmission/fusion,the energy efficiency and the security in Wireless Sensor Network(WSN).Unfortunately,there is no paper in systematic analysis about the performance of the secure data aggregation protocols whether in IWSN or in WSN.In consideration of IWSN,we firstly review the security requirements and techniques in WSN data aggregation in this paper.Then,we give a holistic overview of the classical secure data aggregation protocols,which are divided into three categories:hop-by-hop encrypted data aggregation,end-to-end encrypted data aggregation and unencrypted secure data aggregation.Along this way,combining with the characteristics of industrial applications,we analyze the pros and cons of the existing security schemes in each category qualitatively,and realize that the security and the energy efficiency are suitable for IWSN.Finally,we make the conclusion about the techniques and approach in these categories,and highlight the future research directions of privacy preserving data aggregation in IWSN.展开更多
文摘The reliability and real time of industrial wireless sensor networks (IWSNs) are the absolute requirements for industrial systems, which are two fore- most obstacles for the large-scale applications of IWSNs. This paper studies the multi-objective node placement problem to guarantee the reliability and real time of IWSNs from the perspective of systems. A novel multi-objective node deployment model is proposed in which the reliabil- ity, real time, costs and scalability of IWSNs are addressed. Considering that the optimal node placement is an NP-hard problem, a new multi-objective binary differential evolu- tion harmony search (MOBDEHS) is developed to tackle it, which is inspired by the mechanism of harmony search and differential evolution. Three large-scale node deploy- ment problems are generated as the benCHmarks to verify the proposed model and algorithm. The experimental results demonstrate that the developed model is valid and can be used to design large-scale IWSNs with guaranteed reliability and real-time performance efficiently. Moreover, the comparison results indicate that the proposed MOB- DEHS is an effective tool for multi-objective node place- ment problems and superior to Pareto-based binary differential evolution algorithms, nondominated sorting genetic algorithm II (NSGA-II) and modified NSGA-II.
文摘Energy supply is one of the most critical challenges of wireless sensor networks(WSNs)and industrial wireless sensor networks(IWSNs).While research on coverage optimization problem(COP)centers on the network’s monitoring coverage,this research focuses on the power banks’energy supply coverage.The study of 2-D and 3-D spaces is typical in IWSN,with the realistic environment being more complex with obstacles(i.e.,machines).A 3-D surface is the field of interest(FOI)in this work with the established hybrid power bank deployment model for the energy supply COP optimization of IWSN.The hybrid power bank deployment model is highly adaptive and flexible for new or existing plants already using the IWSN system.The model improves the power supply to a more considerable extent with the least number of power bank deployments.The main innovation in this work is the utilization of a more practical surface model with obstacles and training while improving the convergence speed and quality of the heuristic algorithm.An overall probabilistic coverage rate analysis of every point on the FOI is provided,not limiting the scope to target points or areas.Bresenham’s algorithm is extended from 2-D to 3-D surface to enhance the probabilistic covering model for coverage measurement.A dynamic search strategy(DSS)is proposed to modify the artificial bee colony(ABC)and balance the exploration and exploitation ability for better convergence toward eliminating NP-hard deployment problems.Further,the cellular automata(CA)is utilized to enhance the convergence speed.The case study based on two typical FOI in the IWSN shows that the CA scheme effectively speeds up the optimization process.Comparative experiments are conducted on four benchmark functions to validate the effectiveness of the proposed method.The experimental results show that the proposed algorithm outperforms the ABC and gbest-guided ABC(GABC)algorithms.The results show that the proposed energy coverage optimization method based on the hybrid power bank deployment model generates more accurate results than the results obtained by similar algorithms(i.e.,ABC,GABC).The proposed model is,therefore,effective and efficient for optimization in the IWSN.
文摘Ultra-reliable and low-latency communications(URLLC) has become a fundamental focus of future industrial wireless sensor net-works(IWSNs). With the evolution of automation and process control in industrial environments, the need for increased reliabilityand reduced latencies in wireless communications is even pronounced. Furthermore, the 5G systems specifically target the URLLCin selected areas and industrial automation might turn into a suitable venue for future IWSNs, running 5G as a high speed inter-process linking technology. In this paper, a hybrid multi-channel scheme for performance and throughput enhancement of IWSNsis proposed. The scheme utilizes the multiple frequency channels to increase the overall throughput of the system along with theincrease in reliability. A special purpose frequency channel is defined, which facilitates the failed communications by retransmis-sions where the retransmission slots are allocated according to the priority level of failed communications of different nodes. Ascheduler is used to formulate priority based scheduling for retransmission in TDMA based communication slots of this channel.Furthermore, in carrier-sense multiple access with collision avoidance(CSMA/CA) based slots, a frequency polling is introducedto limit the collisions. Mathematical modelling for performance metrics is also presented. The performance of the proposed schemeis compared with that of IEEE802.15.4e, where the performance is evaluated on the basis of throughput, reliability and the num-ber of nodes accommodated in a cluster. The proposed scheme offers a notable increase in the reliability and throughput over theexisting IEEE802.15.4e Low Latency Deterministic Networks(LLDN) standard.
基金supported by Beijing Education and Scientific Research Programthe National High Technical Research and Development Program of China (863 Program) under Grant No. 2011AA040101+2 种基金the National Natural Science Foundation of China under Grants No. 61173150, No. 61003251Beijing Science and Technology Program under Grant No. Z111100054011078the State Scholarship Fund
文摘Industrial wireless sensor networks adopt a hierarchical structure with large numbers of sensors and routers. Time Division Multiple Access (TDMA) is regarded as an efficient method to reduce the probability of confliction. In the intra-cluster part, the random color selection method is effective in reducing the retry times in an application. In the inter-cluster part, a quick assign algorithm and a dynamic maximum link algorithm are proposed to meet the quick networking or minimum frame size requirements. In the simulation, the dynamic maximum link algorithm produces higher reductions in the frame length than the quick assign algorithm. When the number of routers is 140, the total number of time slots is reduced by 25%. However, the first algorithm needs more control messages, and the average difference in the number of control messages is 3 410. Consequently, the dynamic maximum link algorithm is utilized for adjusting the link schedule to the minimum delay with a relatively high throughput rate, and the quick assign algorithm is utilized for speeding up the networking process.
基金partially supported by the National Natural Science Foundation of China(61571004)the Shanghai Natural Science Foundation(No.17ZR1429100)+1 种基金the National Science and Technology Major Project of China(No.2018ZX03001017-004)the Scientific Instrument Developing Project of the Chinese Academy of Sciences(No.YJKYYQ20170074).
文摘As an Industrial Wireless Sensor Network(IWSN)is usually deployed in a harsh or unattended environment,the privacy security of data aggregation is facing more and more challenges.Currently,the data aggregation protocols mainly focus on improving the efficiency of data transmitting and aggregating,alternately,the aim at enhancing the security of data.The performances of the secure data aggregation protocols are the trade-off of several metrics,which involves the transmission/fusion,the energy efficiency and the security in Wireless Sensor Network(WSN).Unfortunately,there is no paper in systematic analysis about the performance of the secure data aggregation protocols whether in IWSN or in WSN.In consideration of IWSN,we firstly review the security requirements and techniques in WSN data aggregation in this paper.Then,we give a holistic overview of the classical secure data aggregation protocols,which are divided into three categories:hop-by-hop encrypted data aggregation,end-to-end encrypted data aggregation and unencrypted secure data aggregation.Along this way,combining with the characteristics of industrial applications,we analyze the pros and cons of the existing security schemes in each category qualitatively,and realize that the security and the energy efficiency are suitable for IWSN.Finally,we make the conclusion about the techniques and approach in these categories,and highlight the future research directions of privacy preserving data aggregation in IWSN.