Edward Bellamy's three novels, Six to One, Looking Backward, and Equality, are the expression of his reconciliation between industrialism and pastoral ideal. Six to One represents the writer's early pastoral i...Edward Bellamy's three novels, Six to One, Looking Backward, and Equality, are the expression of his reconciliation between industrialism and pastoral ideal. Six to One represents the writer's early pastoral ideal with its traditional romantic plot of retiring form city life and living on a reclusive island for a while. In Looking Backward, however, Bellamy embraces machine and technology and even considers industrialism to be the panacea for social reform. In Equality, the sequel to Looking Backward, Bellamy tends to reconcile and balance between industrialism and pastoral ideal with his advocacy of decentralized suburbs rather than centralized metropolis in the prequel.展开更多
In the realm of the synthesis of heat-integrated distillation configurations,the conventional approach for exploring more heat integration possibilities typically entails the splitting of a single column into a twocol...In the realm of the synthesis of heat-integrated distillation configurations,the conventional approach for exploring more heat integration possibilities typically entails the splitting of a single column into a twocolumn configuration.However,this approach frequently necessitates tedious enumeration procedures,resulting in a considerable computational burden.To surmount this formidable challenge,the present study introduces an innovative remedy:The proposition of a superstructure that encompasses both single-column and multiple two-column configurations.Additionally,a simultaneous optimization algorithm is applied to optimize both the process parameters and heat integration structures of the twocolumn configurations.The effectiveness of this approach is demonstrated through a case study focusing on industrial organosilicon separation.The results underscore that the superstructure methodology not only substantially mitigates computational time compared to exhaustive enumeration but also furnishes solutions that exhibit comparable performance.展开更多
China’s low-carbon development path will make significant contributions to achieving global sustainable development goals.Due to the diverse natural and economic conditions across different regions in China,there exi...China’s low-carbon development path will make significant contributions to achieving global sustainable development goals.Due to the diverse natural and economic conditions across different regions in China,there exists an imbalance in the distribution of car-bon emissions.Therefore,regional cooperation serves as an effective means to attain low-carbon development.This study examined the pattern of carbon emissions and proposed a potential joint emission reduction strategy by utilizing the industrial carbon emission intens-ity(ICEI)as a crucial factor.We utilized social network analysis and Local Indicators of Spatial Association(LISA)space-time trans-ition matrix to investigate the spatiotemporal connections and discrepancies of ICEI in the cities of the Pearl River Basin(PRB),China from 2010 to 2020.The primary drivers of the ICEI were determined through geographical detectors and multi-scale geographically weighted regression.The results were as follows:1)the overall ICEI in the Pearl River Basin is showing a downward trend,and there is a significant spatial imbalance.2)There are numerous network connections between cities regarding the ICEI,but the network structure is relatively fragile and unstable.3)Economically developed cities such as Guangzhou,Foshan,and Dongguan are in the center of the network while playing an intermediary role.4)Energy consumption,industrialization,per capita GDP,urbanization,science and techno-logy,and productivity are found to be the most influential variables in the spatial differentiation of ICEI,and their combination in-creased the explanatory power of the geographic variation of ICEI.Finally,through the analysis of differences and connections in urban carbon emissions under different economic levels and ICEI,the study suggests joint carbon reduction strategies,which are centered on carbon transfer,financial support,and technological assistance among cities.展开更多
Three-dimensional(3D)printing has attracted increasing research interest as an emerging manufacturing technology for devel-oping sophisticated and exquisite architecture through hierarchical printing.It has also been ...Three-dimensional(3D)printing has attracted increasing research interest as an emerging manufacturing technology for devel-oping sophisticated and exquisite architecture through hierarchical printing.It has also been employed in various advanced industrial areas.The development of intelligent biomedical engineering has raised the requirements for 3D printing,such as flexible manufacturing processes and technologies,biocompatible constituents,and alternative bioproducts.However,state-of-the-art 3D printing mainly involves inorganics or polymers and generally focuses on traditional industrial fields,thus severely limiting applications demanding biocompatibility and biodegradability.In this regard,peptide architectonics,which are self-assembled by programmed amino acid sequences that can be flexibly functionalized,have shown promising potential as bioinspired inks for 3D printing.Therefore,the combination of 3D printing and peptide self-assembly poten-tially opens up an alternative avenue of 3D bioprinting for diverse advanced applications.Israel,a small but innovative nation,has significantly contributed to 3D bioprinting in terms of scientific studies,marketization,and peptide architectonics,including modulations and applications,and ranks as a leading area in the 3D bioprinting field.This review summarizes the recent progress in 3D bioprinting in Israel,focusing on scientific studies on printable components,soft devices,and tissue engineering.This paper further delves into the manufacture of industrial products,such as artificial meats and bioinspired supramolecular architectures,and the mechanisms,physicochemical properties,and applications of peptide self-assembly.Undoubtedly,Israel contributes significantly to the field of 3D bioprinting and should thus be appropriately recognized.展开更多
China has made great achievements in industrial development and is transforming into a powerful manufacturing country.Meanwhile,the industrial land scale is also expanding.However,whether industrial structure upgradin...China has made great achievements in industrial development and is transforming into a powerful manufacturing country.Meanwhile,the industrial land scale is also expanding.However,whether industrial structure upgrading achieves the purpose of restraining industrial land expansion remains unanswered.By calculating the industrial land structure index(ILSI)and industrial land expansion scale(ILES),this study analyzed their temporal and spatial distribution characteristics at both regional and city levels from 2007to 2020 in China.Results show that industrial land expansion presents a different trend in the four regions,the ILES in the eastern region is the largest,and the speed of industrial land expansion has declined since 2013,but it has gradually increased since 2016.The ILSI of the eastern and central regions is higher than that of the western and northeastern regions.Furthermore,a spatial Durbin model(SDM)has been established to estimate the spatial effect of industrial structure upgrading on industrial land expansion from 2007 to2020.Notably,industrial structure upgrading has not slowed industrial land expansion.The eastern and western regions require a greater amount of industrial land while upgrading the industrial structure.The improvement of the infrastructure level and international trade level has promoted industrial land expansion.展开更多
With economic development and urbanization in China,the rural settlements have experienced great change.To explore the evolution process of rural settlements in terms of land,population and industry can reveal the dev...With economic development and urbanization in China,the rural settlements have experienced great change.To explore the evolution process of rural settlements in terms of land,population and industry can reveal the development law of rural spatial distribution,population structure and industrial economy in different stages and regions.Studying the development status and evolution characteristics of villages in the upper Tuojiang River basin in Southwest China in the past 20 years are of significant value.The upper Tuojiang River basin includes the main types of terrain found in the Southwest region:mountainous,plains,and hills,exhibiting a certain typicality of geographical characteristics.This study took towns and townships at the town-level scale as the basic unit of research,and constructed an evaluation system for village evolution based on'land,population,and industry'.It employed Criteria Importance Through Inter-Criteria Correlation(CRITIC)analysis to examine the characteristics of village evolution in the area from 2000 to 2020,and used geographic detector analysis to identify the leading factors affecting village evolution.The results show that:(1)From 2000 to 2010,villages in the upper Tuojiang River basin experienced significant changes,and the pace of these transformations slowed from 2010 to 2020.(2)From a comprehensive perspective,from 2000 to 2020,villages in hilly areas show a decline,while villages in plain areas near the city center show a positive urbanization development.(3)Road accessibility and distance from the city center are the main factors that explain the spatial differentiation of village evolution degree in the study area.This study elucidates the spatiotemporal evolution characteristics of villages in the upper Tuojiang River basin and identifies the primary factors contributing to their changes,which will provide a reference for investigating the development of rural areas in different terrains of Southwest China.展开更多
Employment is the greatest livelihood.Whether the impact of industrial robotics technology materialized in machines on employment in the digital age is an“icing on the cake”or“adding fuel to the fire”needs further...Employment is the greatest livelihood.Whether the impact of industrial robotics technology materialized in machines on employment in the digital age is an“icing on the cake”or“adding fuel to the fire”needs further study.This study aims to analyze the impact of the installation and application of industrial robots on labor demand in the context of the Chinese economy.First,from the theoretical logic and the economic development law,this study gives the prior judgment and research hypothesis that industrial intelligence will increase jobs.Then,based on the panel data of 269 cities in China from 2006 to 2021,we use the two-way fixed effect model,dynamic threshold model,and two-stage intermediary effect model.The objective is to investigate the impact of industrial intelligence on enterprise labor demand and its path mechanism.Results show that the overall effect of industrial intelligence on the labor force with the installation density index of industrial robots as the proxy variable is the“creation effect”.In other words,advanced digital technology has created additional jobs,and the overall supply of employment in the labor market has increased.The conclusion is still valid after the endogeneity identification and robustness test.In addition,the positive effect has a nonlinear effect on the network scale.When the installation density of industrial robots exceeds a particular threshold value,the division of labor continues to deepen under the combined action of the production efficiency and compensation effects,which will cause enterprises to increase labor demand further.Further research showed that industrial intelligence can increase employment by promoting synergistic agglomeration and improving labor price distortions.This study concludes that in the digital China era,the introduction and installation of industrial robots by enterprises can affect the optimal allocation of the labor market.This phenomenon has essential experience and reference significance for guiding industrial digitalization and intelligent transformation and promoting the high-quality development of people’s livelihood.展开更多
The Chinese express delivery industry processes nearly 110 billion items in 2022,averaging an annual growth rate of 200%.Among the various types of sorting systems used for handling express items,cross-belt sorting sy...The Chinese express delivery industry processes nearly 110 billion items in 2022,averaging an annual growth rate of 200%.Among the various types of sorting systems used for handling express items,cross-belt sorting systems stand out as the most crucial.However,despite their high degree of automation,the workload for operators has intensified owing to the surging volume of express items.In the era of Industry 5.0,it is imperative to adopt new technologies that not only enhance worker welfare but also improve the efficiency of cross-belt systems.Striking a balance between efficiency in handling express items and operator well-being is challenging.Digital twin technology offers a promising solution in this respect.A realization method of a human-machine integrated digital twin is proposed in this study,enabling the interaction of biological human bodies,virtual human bodies,virtual equipment,and logistics equipment in a closed loop,thus setting an operating framework.Key technologies in the proposed framework include a collection of heterogeneous data from multiple sources,construction of the relationship between operator fatigue and operation efficiency based on physiological measurements,virtual model construction,and an online optimization module based on real-time simulation.The feasibility of the proposed method was verified in an express distribution center.展开更多
Carbon capture,utilization and storage(CCUS) is widely recognized as a vital strategy for mitigating the impact of human induced climate change.Among various CO_(2) adsorbents,intermediate-temperature solid adsorbents...Carbon capture,utilization and storage(CCUS) is widely recognized as a vital strategy for mitigating the impact of human induced climate change.Among various CO_(2) adsorbents,intermediate-temperature solid adsorbents have garnered significant attention due to their potential applications in hydrogen utilization,specifically in the water gas shift,steam reforming and gasification processes.These processes are crucial for achieving carbon neutrality.While laboratory-level studies have showcased the high adsorption capacity of these materials via various synthesis and modification methods,their practical application in complex industrial environments remains challenging,impeding the commercialization process.This review aims to critically summarize the recent research progress made in intermediatetemperature(200-400℃) solid CO_(2) adsorbents,particularly focusing on indicators such as cyclability,gas selectivity,and formability,which play vital roles in industrial application scenarios.Additionally,we provide an overview of laboratory-level advanced technologies specifically tailored for industrial applications.Furthermore,we highlight several industrial-ready advanced technologies that can pave the way for overcoming the challenges associated with large-scale implementation.The insights provided by this review aim to assist researchers in identifying the most relevant research directions for industrial applications.By promoting advances in the application of solid adsorbents,we strive to facilitate the ultimate goal of achieving carbon neutrality.展开更多
Industrial robots are becoming increasingly vulnerable to cyber incidents and attacks,particularly with the dawn of the Industrial Internet-of-Things(IIoT).To gain a comprehensive understanding of these cyber risks,vu...Industrial robots are becoming increasingly vulnerable to cyber incidents and attacks,particularly with the dawn of the Industrial Internet-of-Things(IIoT).To gain a comprehensive understanding of these cyber risks,vulnerabilities of industrial robots were analyzed empirically,using more than three million communication packets collected with testbeds of two ABB IRB120 robots and five other robots from various original equipment manufacturers(OEMs).This analysis,guided by the confidentiality-integrity-availability(CIA)triad,uncovers robot vulnerabilities in three dimensions:confidentiality,integrity,and availability.These vulnerabilities were used to design Covering Robot Manipulation via Data Deception(CORMAND2),an automated cyber-physical attack against industrial robots.CORMAND2 manipulates robot operation while deceiving the Supervisory Control and Data Acquisition(SCADA)system that the robot is operating normally by modifying the robot’s movement data and data deception.CORMAND2 and its capability of degrading the manufacturing was validated experimentally using the aforementioned seven robots from six different OEMs.CORMAND2 unveils the limitations of existing anomaly detection systems,more specifically the assumption of the authenticity of SCADA-received movement data,to which we propose mitigations for.展开更多
Nowadays,the rapid development of the social economy inevitably leads to global energy and environmental crisis.For this reason,more and more scholars focus on the development of photocatalysis and/or electrocatalysis...Nowadays,the rapid development of the social economy inevitably leads to global energy and environmental crisis.For this reason,more and more scholars focus on the development of photocatalysis and/or electrocatalysis technology for the advantage in the sustainable production of high-value-added products,and the high efficiency in pollutants remediation.Although there is plenty of outstanding research has been put forward continuously,most of them focuses on catalysis performance and reaction mechanisms in laboratory conditions.Realizing industrial application of photo/electrocatalytic processes is still a challenge that needs to be overcome by social demand.In this regard,this review comprehensively summarized several explorations in thefield of photo/electrocatalytic reduction towards potential industrial applications in recent years.Special attention is paid to the successful attempts and the current status of photo/electrocatalytic water splitting,carbon dioxide conversion,resource utilization from waste,etc.,by using advanced reactors.The key problems and challenges of photo/electrocatalysis in future industrial practice are also discussed,and the possible development directions are also pointed out from the industry view.展开更多
Ingredient optimization plays a pivotal role in the copper industry,for which it is closely related to the concentrate utilization rate,stability of furnace conditions,and the quality of copper production.To acquire a...Ingredient optimization plays a pivotal role in the copper industry,for which it is closely related to the concentrate utilization rate,stability of furnace conditions,and the quality of copper production.To acquire a practical ingredient plan,which should exhibit long duration time with sufficient utilization and feeding stability for real applications,an ingredient plan optimization model is proposed in this study to effectively guarantee continuous production and stable furnace conditions.To address the complex challenges posed by this integer programming model,including multiple coupling feeding stages,intricate constraints,and significant non-linearity,a multi-stage differential-multifactorial evolution algorithm is developed.In the proposed algorithm,the differential evolutionary(DE)algorithm is improved in three aspects to efficiently tackle challenges when optimizing the proposed model.First,unlike traditional time-consuming serial approaches,the multifactorial evolutionary algorithm is utilized to optimize multiple complex models contained in the population of evolutionary algorithm caused by the feeding stability in a parallel manner.Second,a repair algorithm is employed to adjust infeasible ingredient lists in a timely manner.In addition,a local search strategy taking feedback from the current optima and considering the different positions of global optimum is developed to avoiding premature convergence of the differential evolutionary algorithm.Finally,the simulation experiments considering different planning horizons using real data from the copper industry in China are conducted,which demonstrates the superiority of the proposed method on feeding duration and stability compared with other commonly deployed approaches.It is practically helpful for reducing material cost as well as increasing production profit for the copper industry.展开更多
This paper attempts to explore the decoupling relationship and its drivers between industrial economic increase and energy-related CO_(2) emissions(ICE). Firstly, the decoupling relationship was evaluated by Tapio ind...This paper attempts to explore the decoupling relationship and its drivers between industrial economic increase and energy-related CO_(2) emissions(ICE). Firstly, the decoupling relationship was evaluated by Tapio index. Then, based on the DEA meta-frontier theory framework which taking into account the regional and industrial heterogeneity and index decomposition method, the driving factors of decoupling process were explored mainly from the view of technology and efficiency. The results show that during2000-2019, weak decoupling was the primary state. Investment scale expansion was the largest reason hindering decoupling process of industrial increase from ICE. Both energy saving and production technology achieved significant progress, which facilitated the decoupling process. Simultaneously, the energy technology gap and production technology gap among regions have been narrowed, and played a role in promoting decoupling process. On the contrary, both scale economy efficiency and pure technical efficiency have inhibiting effects on decoupling process. The former indicates that the scale economy of China's industry was not conducive to improve energy efficiency and production efficiency, while the latter indicates that resource misallocation problem may exist in both energy market and product market.展开更多
The proliferation of internet communication channels has increased telecom fraud,causing billions of euros in losses for customers and the industry each year.Fraudsters constantly find new ways to engage in illegal ac...The proliferation of internet communication channels has increased telecom fraud,causing billions of euros in losses for customers and the industry each year.Fraudsters constantly find new ways to engage in illegal activity on the network.To reduce these losses,a new fraud detection approach is required.Telecom fraud detection involves identifying a small number of fraudulent calls from a vast amount of call traffic.Developing an effective strategy to combat fraud has become challenging.Although much effort has been made to detect fraud,most existing methods are designed for batch processing,not real-time detection.To solve this problem,we propose an online fraud detection model using a Neural Factorization Autoencoder(NFA),which analyzes customer calling patterns to detect fraudulent calls.The model employs Neural Factorization Machines(NFM)and an Autoencoder(AE)to model calling patterns and a memory module to adapt to changing customer behaviour.We evaluate our approach on a large dataset of real-world call detail records and compare it with several state-of-the-art methods.Our results show that our approach outperforms the baselines,with an AUC of 91.06%,a TPR of 91.89%,an FPR of 14.76%,and an F1-score of 95.45%.These results demonstrate the effectiveness of our approach in detecting fraud in real-time and suggest that it can be a valuable tool for preventing fraud in telecommunications networks.展开更多
The concept of the digital twin,also known colloquially as the DT,is a fundamental principle within Industry 4.0 framework.In recent years,the concept of digital siblings has generated considerable academic and practi...The concept of the digital twin,also known colloquially as the DT,is a fundamental principle within Industry 4.0 framework.In recent years,the concept of digital siblings has generated considerable academic and practical interest.However,academia and industry have used a variety of interpretations,and the scientific literature lacks a unified and consistent definition of this term.The purpose of this study is to systematically examine the definitional landscape of the digital twin concept as outlined in scholarly literature,beginning with its origins in the aerospace domain and extending to its contemporary interpretations in the manufacturing industry.Notably,this investigationwill focus on the research conducted on Industry 4.0 and smartmanufacturing,elucidating the diverse applications of digital twins in fields including aerospace,intelligentmanufacturing,intelligent transportation,and intelligent cities,among others.展开更多
Specialized households serve as the primary units within specialized villages in China,and their capacity to withstand risks and external influences significantly shapes the future trajectory of specialized villages a...Specialized households serve as the primary units within specialized villages in China,and their capacity to withstand risks and external influences significantly shapes the future trajectory of specialized villages and the overall vitality of the rural economy.In this study,we established a measurement indicator system based on the definition of specialized households’resilience,elucidating the logical connection between specialized households’resilience and rural industrial development in China.The musical instrument industry in Lankao County,Henan Province of China,was employed as a case;survey data,the entropy method,and an obstacle diagnosis model were used to examine how instrument production specialized households responded to the challenges posed by Corona Virus Disease 2019(COVID-19)and the tightening of national environmental protection policies,yielding the following key findings:1)there exists substantial variation in the comprehensive resilience levels among different specialized households;2)the ability to learn and adapt is the most significant contributor to the overall resilience level of specialized households;3)technological proficiency and access to skilled talent emerge as pivotal factors influencing specialized households’resilience;4)the positioning of specialized households within the industrial supply chain and the stability of their income have a direct bearing on their resilience level.The influence of specialized households’resilience on industrial development primarily manifests in the following ways:stronger resilience correlates with increased stability in production and sales,fostering a more proactive approach to future actions.However,heightened exposure to the external macroeconomic environment can lead to a higher rate of export reduction.To enhance the development resilience of entities like specialized households and family farms,and to invigorate rural economic development,escalating investments in rural science and technology and prioritizing the training of technical talent become imperative.展开更多
This study analyzed the impact of land-based contaminants and tertiary industrial structure on economic development in the selected Bohai Bay area,China.Based on panel data spanning 2011-2020,a vector autoregressive(V...This study analyzed the impact of land-based contaminants and tertiary industrial structure on economic development in the selected Bohai Bay area,China.Based on panel data spanning 2011-2020,a vector autoregressive(VAR)model is used to analyze and forecast the short-run and long-run relationships between three industrial structures,pollutant discharge,and economic development.The results showed that the environmental index had a long-term cointegration relationship with the industrial structure economic index.Per capital chemical oxygen demand(PCOD)and per capita ammonia nitrogen(PNH_(3)N)had a positive impact on delta per capita GDP(dPGDP),while per capita solid waste(PSW),the secondary industry rate(SIR)and delta tertiary industry(dTIR)had a negative impact on dPGDP.The VAR model under this coupling system had stability and credibility.The impulse response results showed that the short-term effect of the coupling system on dPGDP was basically consistent with the Granger causality test results.In addition,variance decomposition was used in this study to predict the long-term impact of the coupling system in the next ten periods(i.e.,ten years).It was found that dTIR had a great impact on dPGDP,with a contribution rate as high as 74.35%in the tenth period,followed by the contribution rate of PCOD up to 3.94%,while the long-term contribution rates of PSW,SIR and PNH3N were all less than 1%.The results show that the government should support the development of the tertiary industry to maintain the vitality of economic development and prevent environmental deterioration.展开更多
Rapidly expanding studies investigate the effects of e-commerce on company operations in the retail market.However,the interaction between agri-food e-commerce(AEC)and the traditional agri-food wholesale industry(AWI)...Rapidly expanding studies investigate the effects of e-commerce on company operations in the retail market.However,the interaction between agri-food e-commerce(AEC)and the traditional agri-food wholesale industry(AWI)has not received enough attention in the existing literature.Based on the provincial panel data from 2013 to 2020 in China,this paper examines the effect of AEC on AWI,comprising three dimensions:digitalization(DIGITAL),agrifood e-commerce infrastructure and supporting services(AECI),and agri-food e-commerce economy(AECE).First,AWI and AEC are measured using an entropy-based combination of indicators.The results indicate that for China as a whole,AWI has remained practically unchanged,whereas AEC exhibits a significant rising trend.Second,the findings of the fixed-effect regression reveal that DIGITAL and AECE tend to raise AWI,whereas AECI negatively affects AWI.Third,threshold regression results indicate that AECI tends to diminish AWI with three-stage inhibitory intensity,which manifests as a first increase and then a drop in the inhibition degree.These results suggest that with the introduction of e-commerce for agricultural product circulation,digital development will have catfish effects that tend to stimulate the vitality of the conventional wholesale industry and promote technical progress.Furthermore,the traditional wholesale industry benefits financially from e-commerce even while it diverts part of the traditional wholesale circulation for agricultural products.展开更多
The advent of Industry 5.0 marks a transformative era where Cyber-Physical Systems(CPSs)seamlessly integrate physical processes with advanced digital technologies.However,as industries become increasingly interconnect...The advent of Industry 5.0 marks a transformative era where Cyber-Physical Systems(CPSs)seamlessly integrate physical processes with advanced digital technologies.However,as industries become increasingly interconnected and reliant on smart digital technologies,the intersection of physical and cyber domains introduces novel security considerations,endangering the entire industrial ecosystem.The transition towards a more cooperative setting,including humans and machines in Industry 5.0,together with the growing intricacy and interconnection of CPSs,presents distinct and diverse security and privacy challenges.In this regard,this study provides a comprehensive review of security and privacy concerns pertaining to CPSs in the context of Industry 5.0.The review commences by providing an outline of the role of CPSs in Industry 5.0 and then proceeds to conduct a thorough review of the different security risks associated with CPSs in the context of Industry 5.0.Afterward,the study also presents the privacy implications inherent in these systems,particularly in light of the massive data collection and processing required.In addition,the paper delineates potential avenues for future research and provides countermeasures to surmount these challenges.Overall,the study underscores the imperative of adopting comprehensive security and privacy strategies within the context of Industry 5.0.展开更多
The steel industry is a major source of CO_(2) emissions,and thus,the mitigation of carbon emissions is the most pressing challenge in this sector.In this paper,international environmental governance in the steel indu...The steel industry is a major source of CO_(2) emissions,and thus,the mitigation of carbon emissions is the most pressing challenge in this sector.In this paper,international environmental governance in the steel industry is reviewed,and the current state of development of low-carbon technologies is discussed.Additionally,low-carbon pathways for the steel industry at the current time are proposed,emphasizing prevention and treatment strategies.Furthermore,the prospects of low-carbon technologies are explored from the perspective of transitioning the energy structure to a“carbon-electricity-hydrogen”relationship.Overall,steel enterprises should adopt hydrogen-rich metallurgical technologies that are compatible with current needs and process flows in the short term,based on the carbon substitution with hydrogen(prevention)and the CCU(CO_(2) capture and utilization)concepts(treatment).Additionally,the capture and utilization of CO_(2) for steelmaking,which can assist in achieving short-term emission reduction targets but is not a long-term solution,is discussed.In conclusion,in the long term,the carbon metallurgical process should be gradually supplanted by a hydrogen-electric synergistic approach,thus transforming the energy structure of existing steelmaking processes and attaining near-zero carbon emission steelmaking technology.展开更多
文摘Edward Bellamy's three novels, Six to One, Looking Backward, and Equality, are the expression of his reconciliation between industrialism and pastoral ideal. Six to One represents the writer's early pastoral ideal with its traditional romantic plot of retiring form city life and living on a reclusive island for a while. In Looking Backward, however, Bellamy embraces machine and technology and even considers industrialism to be the panacea for social reform. In Equality, the sequel to Looking Backward, Bellamy tends to reconcile and balance between industrialism and pastoral ideal with his advocacy of decentralized suburbs rather than centralized metropolis in the prequel.
文摘In the realm of the synthesis of heat-integrated distillation configurations,the conventional approach for exploring more heat integration possibilities typically entails the splitting of a single column into a twocolumn configuration.However,this approach frequently necessitates tedious enumeration procedures,resulting in a considerable computational burden.To surmount this formidable challenge,the present study introduces an innovative remedy:The proposition of a superstructure that encompasses both single-column and multiple two-column configurations.Additionally,a simultaneous optimization algorithm is applied to optimize both the process parameters and heat integration structures of the twocolumn configurations.The effectiveness of this approach is demonstrated through a case study focusing on industrial organosilicon separation.The results underscore that the superstructure methodology not only substantially mitigates computational time compared to exhaustive enumeration but also furnishes solutions that exhibit comparable performance.
基金Under the auspices of the Philosophy and Social Science Planning Project of Guizhou,China(No.21GZZD59)。
文摘China’s low-carbon development path will make significant contributions to achieving global sustainable development goals.Due to the diverse natural and economic conditions across different regions in China,there exists an imbalance in the distribution of car-bon emissions.Therefore,regional cooperation serves as an effective means to attain low-carbon development.This study examined the pattern of carbon emissions and proposed a potential joint emission reduction strategy by utilizing the industrial carbon emission intens-ity(ICEI)as a crucial factor.We utilized social network analysis and Local Indicators of Spatial Association(LISA)space-time trans-ition matrix to investigate the spatiotemporal connections and discrepancies of ICEI in the cities of the Pearl River Basin(PRB),China from 2010 to 2020.The primary drivers of the ICEI were determined through geographical detectors and multi-scale geographically weighted regression.The results were as follows:1)the overall ICEI in the Pearl River Basin is showing a downward trend,and there is a significant spatial imbalance.2)There are numerous network connections between cities regarding the ICEI,but the network structure is relatively fragile and unstable.3)Economically developed cities such as Guangzhou,Foshan,and Dongguan are in the center of the network while playing an intermediary role.4)Energy consumption,industrialization,per capita GDP,urbanization,science and techno-logy,and productivity are found to be the most influential variables in the spatial differentiation of ICEI,and their combination in-creased the explanatory power of the geographic variation of ICEI.Finally,through the analysis of differences and connections in urban carbon emissions under different economic levels and ICEI,the study suggests joint carbon reduction strategies,which are centered on carbon transfer,financial support,and technological assistance among cities.
基金supported by the National Key R&D Program of China within the China-Israel Cooperative Scientific Research(No.2022YFE0100800)(Israeli No.3-18130)the National Natural Science Foundation of China(Nos.52175551,22072181)+1 种基金the Leading Innovative and Entrepreneur Team Introduction Program of Zhejiang Province,China(No.2022R01001)the Zhejiang University Global Partnership Fund and Open Foundation of the State Key Laboratory of Fluid Power and Mechatronic Systems(No.GZKF-202224).
文摘Three-dimensional(3D)printing has attracted increasing research interest as an emerging manufacturing technology for devel-oping sophisticated and exquisite architecture through hierarchical printing.It has also been employed in various advanced industrial areas.The development of intelligent biomedical engineering has raised the requirements for 3D printing,such as flexible manufacturing processes and technologies,biocompatible constituents,and alternative bioproducts.However,state-of-the-art 3D printing mainly involves inorganics or polymers and generally focuses on traditional industrial fields,thus severely limiting applications demanding biocompatibility and biodegradability.In this regard,peptide architectonics,which are self-assembled by programmed amino acid sequences that can be flexibly functionalized,have shown promising potential as bioinspired inks for 3D printing.Therefore,the combination of 3D printing and peptide self-assembly poten-tially opens up an alternative avenue of 3D bioprinting for diverse advanced applications.Israel,a small but innovative nation,has significantly contributed to 3D bioprinting in terms of scientific studies,marketization,and peptide architectonics,including modulations and applications,and ranks as a leading area in the 3D bioprinting field.This review summarizes the recent progress in 3D bioprinting in Israel,focusing on scientific studies on printable components,soft devices,and tissue engineering.This paper further delves into the manufacture of industrial products,such as artificial meats and bioinspired supramolecular architectures,and the mechanisms,physicochemical properties,and applications of peptide self-assembly.Undoubtedly,Israel contributes significantly to the field of 3D bioprinting and should thus be appropriately recognized.
基金Under the auspices of National Natural Science Foundation of China(No.72074181)National Social Science Foundation of China(No.20CJY023)Innovation Capability Support Program of Shaanxi(No.2021KJXX-12)。
文摘China has made great achievements in industrial development and is transforming into a powerful manufacturing country.Meanwhile,the industrial land scale is also expanding.However,whether industrial structure upgrading achieves the purpose of restraining industrial land expansion remains unanswered.By calculating the industrial land structure index(ILSI)and industrial land expansion scale(ILES),this study analyzed their temporal and spatial distribution characteristics at both regional and city levels from 2007to 2020 in China.Results show that industrial land expansion presents a different trend in the four regions,the ILES in the eastern region is the largest,and the speed of industrial land expansion has declined since 2013,but it has gradually increased since 2016.The ILSI of the eastern and central regions is higher than that of the western and northeastern regions.Furthermore,a spatial Durbin model(SDM)has been established to estimate the spatial effect of industrial structure upgrading on industrial land expansion from 2007 to2020.Notably,industrial structure upgrading has not slowed industrial land expansion.The eastern and western regions require a greater amount of industrial land while upgrading the industrial structure.The improvement of the infrastructure level and international trade level has promoted industrial land expansion.
基金The authors thank the project of Remote Sensing Data and Related Parameters Processing in Southwest China(Project No.612106241)the project of Urban Remote Sensing Data Processing and Multi-Source Integration in Central China(Project No.111/611508101).
文摘With economic development and urbanization in China,the rural settlements have experienced great change.To explore the evolution process of rural settlements in terms of land,population and industry can reveal the development law of rural spatial distribution,population structure and industrial economy in different stages and regions.Studying the development status and evolution characteristics of villages in the upper Tuojiang River basin in Southwest China in the past 20 years are of significant value.The upper Tuojiang River basin includes the main types of terrain found in the Southwest region:mountainous,plains,and hills,exhibiting a certain typicality of geographical characteristics.This study took towns and townships at the town-level scale as the basic unit of research,and constructed an evaluation system for village evolution based on'land,population,and industry'.It employed Criteria Importance Through Inter-Criteria Correlation(CRITIC)analysis to examine the characteristics of village evolution in the area from 2000 to 2020,and used geographic detector analysis to identify the leading factors affecting village evolution.The results show that:(1)From 2000 to 2010,villages in the upper Tuojiang River basin experienced significant changes,and the pace of these transformations slowed from 2010 to 2020.(2)From a comprehensive perspective,from 2000 to 2020,villages in hilly areas show a decline,while villages in plain areas near the city center show a positive urbanization development.(3)Road accessibility and distance from the city center are the main factors that explain the spatial differentiation of village evolution degree in the study area.This study elucidates the spatiotemporal evolution characteristics of villages in the upper Tuojiang River basin and identifies the primary factors contributing to their changes,which will provide a reference for investigating the development of rural areas in different terrains of Southwest China.
文摘Employment is the greatest livelihood.Whether the impact of industrial robotics technology materialized in machines on employment in the digital age is an“icing on the cake”or“adding fuel to the fire”needs further study.This study aims to analyze the impact of the installation and application of industrial robots on labor demand in the context of the Chinese economy.First,from the theoretical logic and the economic development law,this study gives the prior judgment and research hypothesis that industrial intelligence will increase jobs.Then,based on the panel data of 269 cities in China from 2006 to 2021,we use the two-way fixed effect model,dynamic threshold model,and two-stage intermediary effect model.The objective is to investigate the impact of industrial intelligence on enterprise labor demand and its path mechanism.Results show that the overall effect of industrial intelligence on the labor force with the installation density index of industrial robots as the proxy variable is the“creation effect”.In other words,advanced digital technology has created additional jobs,and the overall supply of employment in the labor market has increased.The conclusion is still valid after the endogeneity identification and robustness test.In addition,the positive effect has a nonlinear effect on the network scale.When the installation density of industrial robots exceeds a particular threshold value,the division of labor continues to deepen under the combined action of the production efficiency and compensation effects,which will cause enterprises to increase labor demand further.Further research showed that industrial intelligence can increase employment by promoting synergistic agglomeration and improving labor price distortions.This study concludes that in the digital China era,the introduction and installation of industrial robots by enterprises can affect the optimal allocation of the labor market.This phenomenon has essential experience and reference significance for guiding industrial digitalization and intelligent transformation and promoting the high-quality development of people’s livelihood.
基金Supported by National Natural Science Foundation of China(Grant No.52075036)Key Technologies Research and Development Program of China(Grant No.2022YFC3302204).
文摘The Chinese express delivery industry processes nearly 110 billion items in 2022,averaging an annual growth rate of 200%.Among the various types of sorting systems used for handling express items,cross-belt sorting systems stand out as the most crucial.However,despite their high degree of automation,the workload for operators has intensified owing to the surging volume of express items.In the era of Industry 5.0,it is imperative to adopt new technologies that not only enhance worker welfare but also improve the efficiency of cross-belt systems.Striking a balance between efficiency in handling express items and operator well-being is challenging.Digital twin technology offers a promising solution in this respect.A realization method of a human-machine integrated digital twin is proposed in this study,enabling the interaction of biological human bodies,virtual human bodies,virtual equipment,and logistics equipment in a closed loop,thus setting an operating framework.Key technologies in the proposed framework include a collection of heterogeneous data from multiple sources,construction of the relationship between operator fatigue and operation efficiency based on physiological measurements,virtual model construction,and an online optimization module based on real-time simulation.The feasibility of the proposed method was verified in an express distribution center.
基金funded by the National Key R&D Program of China(2022YFB4101702)the National Natural Science Foundation of China(52106072 and 52225003)the Fundamental Research Funds for Central Universities(2019JQ03015)。
文摘Carbon capture,utilization and storage(CCUS) is widely recognized as a vital strategy for mitigating the impact of human induced climate change.Among various CO_(2) adsorbents,intermediate-temperature solid adsorbents have garnered significant attention due to their potential applications in hydrogen utilization,specifically in the water gas shift,steam reforming and gasification processes.These processes are crucial for achieving carbon neutrality.While laboratory-level studies have showcased the high adsorption capacity of these materials via various synthesis and modification methods,their practical application in complex industrial environments remains challenging,impeding the commercialization process.This review aims to critically summarize the recent research progress made in intermediatetemperature(200-400℃) solid CO_(2) adsorbents,particularly focusing on indicators such as cyclability,gas selectivity,and formability,which play vital roles in industrial application scenarios.Additionally,we provide an overview of laboratory-level advanced technologies specifically tailored for industrial applications.Furthermore,we highlight several industrial-ready advanced technologies that can pave the way for overcoming the challenges associated with large-scale implementation.The insights provided by this review aim to assist researchers in identifying the most relevant research directions for industrial applications.By promoting advances in the application of solid adsorbents,we strive to facilitate the ultimate goal of achieving carbon neutrality.
基金Science and Technology Innovation 2030 Program(2018AAA0101605).
文摘Industrial robots are becoming increasingly vulnerable to cyber incidents and attacks,particularly with the dawn of the Industrial Internet-of-Things(IIoT).To gain a comprehensive understanding of these cyber risks,vulnerabilities of industrial robots were analyzed empirically,using more than three million communication packets collected with testbeds of two ABB IRB120 robots and five other robots from various original equipment manufacturers(OEMs).This analysis,guided by the confidentiality-integrity-availability(CIA)triad,uncovers robot vulnerabilities in three dimensions:confidentiality,integrity,and availability.These vulnerabilities were used to design Covering Robot Manipulation via Data Deception(CORMAND2),an automated cyber-physical attack against industrial robots.CORMAND2 manipulates robot operation while deceiving the Supervisory Control and Data Acquisition(SCADA)system that the robot is operating normally by modifying the robot’s movement data and data deception.CORMAND2 and its capability of degrading the manufacturing was validated experimentally using the aforementioned seven robots from six different OEMs.CORMAND2 unveils the limitations of existing anomaly detection systems,more specifically the assumption of the authenticity of SCADA-received movement data,to which we propose mitigations for.
基金supported by the National Natural Science Foundation of China(22278030,22090032,22090030,22288102,22242019)the Fundamental Research Funds for the Central Universities(buctrc202119,2312018RC07)+1 种基金Major Program of Qingyuan Innovation Laboratory(Grant No.001220005)the Experiments for Space Exploration Program and the Qian Xuesen Laboratory,China Academy of Space Technology。
文摘Nowadays,the rapid development of the social economy inevitably leads to global energy and environmental crisis.For this reason,more and more scholars focus on the development of photocatalysis and/or electrocatalysis technology for the advantage in the sustainable production of high-value-added products,and the high efficiency in pollutants remediation.Although there is plenty of outstanding research has been put forward continuously,most of them focuses on catalysis performance and reaction mechanisms in laboratory conditions.Realizing industrial application of photo/electrocatalytic processes is still a challenge that needs to be overcome by social demand.In this regard,this review comprehensively summarized several explorations in thefield of photo/electrocatalytic reduction towards potential industrial applications in recent years.Special attention is paid to the successful attempts and the current status of photo/electrocatalytic water splitting,carbon dioxide conversion,resource utilization from waste,etc.,by using advanced reactors.The key problems and challenges of photo/electrocatalysis in future industrial practice are also discussed,and the possible development directions are also pointed out from the industry view.
基金supported by the National Natural Science Foundation(61833003,62125302,U1908218).
文摘Ingredient optimization plays a pivotal role in the copper industry,for which it is closely related to the concentrate utilization rate,stability of furnace conditions,and the quality of copper production.To acquire a practical ingredient plan,which should exhibit long duration time with sufficient utilization and feeding stability for real applications,an ingredient plan optimization model is proposed in this study to effectively guarantee continuous production and stable furnace conditions.To address the complex challenges posed by this integer programming model,including multiple coupling feeding stages,intricate constraints,and significant non-linearity,a multi-stage differential-multifactorial evolution algorithm is developed.In the proposed algorithm,the differential evolutionary(DE)algorithm is improved in three aspects to efficiently tackle challenges when optimizing the proposed model.First,unlike traditional time-consuming serial approaches,the multifactorial evolutionary algorithm is utilized to optimize multiple complex models contained in the population of evolutionary algorithm caused by the feeding stability in a parallel manner.Second,a repair algorithm is employed to adjust infeasible ingredient lists in a timely manner.In addition,a local search strategy taking feedback from the current optima and considering the different positions of global optimum is developed to avoiding premature convergence of the differential evolutionary algorithm.Finally,the simulation experiments considering different planning horizons using real data from the copper industry in China are conducted,which demonstrates the superiority of the proposed method on feeding duration and stability compared with other commonly deployed approaches.It is practically helpful for reducing material cost as well as increasing production profit for the copper industry.
基金financial support from the China Postdoctoral Science Foundation project(No.2023M733253)。
文摘This paper attempts to explore the decoupling relationship and its drivers between industrial economic increase and energy-related CO_(2) emissions(ICE). Firstly, the decoupling relationship was evaluated by Tapio index. Then, based on the DEA meta-frontier theory framework which taking into account the regional and industrial heterogeneity and index decomposition method, the driving factors of decoupling process were explored mainly from the view of technology and efficiency. The results show that during2000-2019, weak decoupling was the primary state. Investment scale expansion was the largest reason hindering decoupling process of industrial increase from ICE. Both energy saving and production technology achieved significant progress, which facilitated the decoupling process. Simultaneously, the energy technology gap and production technology gap among regions have been narrowed, and played a role in promoting decoupling process. On the contrary, both scale economy efficiency and pure technical efficiency have inhibiting effects on decoupling process. The former indicates that the scale economy of China's industry was not conducive to improve energy efficiency and production efficiency, while the latter indicates that resource misallocation problem may exist in both energy market and product market.
基金This research work has been conducted in cooperation with members of DETSI project supported by BPI France and Pays de Loire and Auvergne Rhone Alpes.
文摘The proliferation of internet communication channels has increased telecom fraud,causing billions of euros in losses for customers and the industry each year.Fraudsters constantly find new ways to engage in illegal activity on the network.To reduce these losses,a new fraud detection approach is required.Telecom fraud detection involves identifying a small number of fraudulent calls from a vast amount of call traffic.Developing an effective strategy to combat fraud has become challenging.Although much effort has been made to detect fraud,most existing methods are designed for batch processing,not real-time detection.To solve this problem,we propose an online fraud detection model using a Neural Factorization Autoencoder(NFA),which analyzes customer calling patterns to detect fraudulent calls.The model employs Neural Factorization Machines(NFM)and an Autoencoder(AE)to model calling patterns and a memory module to adapt to changing customer behaviour.We evaluate our approach on a large dataset of real-world call detail records and compare it with several state-of-the-art methods.Our results show that our approach outperforms the baselines,with an AUC of 91.06%,a TPR of 91.89%,an FPR of 14.76%,and an F1-score of 95.45%.These results demonstrate the effectiveness of our approach in detecting fraud in real-time and suggest that it can be a valuable tool for preventing fraud in telecommunications networks.
基金This research is supported by National Natural Science Foundation of China(No.61902158).
文摘The concept of the digital twin,also known colloquially as the DT,is a fundamental principle within Industry 4.0 framework.In recent years,the concept of digital siblings has generated considerable academic and practical interest.However,academia and industry have used a variety of interpretations,and the scientific literature lacks a unified and consistent definition of this term.The purpose of this study is to systematically examine the definitional landscape of the digital twin concept as outlined in scholarly literature,beginning with its origins in the aerospace domain and extending to its contemporary interpretations in the manufacturing industry.Notably,this investigationwill focus on the research conducted on Industry 4.0 and smartmanufacturing,elucidating the diverse applications of digital twins in fields including aerospace,intelligentmanufacturing,intelligent transportation,and intelligent cities,among others.
基金Under the auspices of the China Social Science(No.21BJY218)National Natural Science Foundation of China(No.41801113)Newcomer funding from Institute of Geographic Sciences and Natural Resources Research,Chinese Academy of Sciences(No.E0V00100)。
文摘Specialized households serve as the primary units within specialized villages in China,and their capacity to withstand risks and external influences significantly shapes the future trajectory of specialized villages and the overall vitality of the rural economy.In this study,we established a measurement indicator system based on the definition of specialized households’resilience,elucidating the logical connection between specialized households’resilience and rural industrial development in China.The musical instrument industry in Lankao County,Henan Province of China,was employed as a case;survey data,the entropy method,and an obstacle diagnosis model were used to examine how instrument production specialized households responded to the challenges posed by Corona Virus Disease 2019(COVID-19)and the tightening of national environmental protection policies,yielding the following key findings:1)there exists substantial variation in the comprehensive resilience levels among different specialized households;2)the ability to learn and adapt is the most significant contributor to the overall resilience level of specialized households;3)technological proficiency and access to skilled talent emerge as pivotal factors influencing specialized households’resilience;4)the positioning of specialized households within the industrial supply chain and the stability of their income have a direct bearing on their resilience level.The influence of specialized households’resilience on industrial development primarily manifests in the following ways:stronger resilience correlates with increased stability in production and sales,fostering a more proactive approach to future actions.However,heightened exposure to the external macroeconomic environment can lead to a higher rate of export reduction.To enhance the development resilience of entities like specialized households and family farms,and to invigorate rural economic development,escalating investments in rural science and technology and prioritizing the training of technical talent become imperative.
基金supported by the research funds for Coupling Research on Industrial Upgrade and Environmental Management in the Bohai Rim-Technique,methodology,and Environmental Economic Policies(No.42076221).
文摘This study analyzed the impact of land-based contaminants and tertiary industrial structure on economic development in the selected Bohai Bay area,China.Based on panel data spanning 2011-2020,a vector autoregressive(VAR)model is used to analyze and forecast the short-run and long-run relationships between three industrial structures,pollutant discharge,and economic development.The results showed that the environmental index had a long-term cointegration relationship with the industrial structure economic index.Per capital chemical oxygen demand(PCOD)and per capita ammonia nitrogen(PNH_(3)N)had a positive impact on delta per capita GDP(dPGDP),while per capita solid waste(PSW),the secondary industry rate(SIR)and delta tertiary industry(dTIR)had a negative impact on dPGDP.The VAR model under this coupling system had stability and credibility.The impulse response results showed that the short-term effect of the coupling system on dPGDP was basically consistent with the Granger causality test results.In addition,variance decomposition was used in this study to predict the long-term impact of the coupling system in the next ten periods(i.e.,ten years).It was found that dTIR had a great impact on dPGDP,with a contribution rate as high as 74.35%in the tenth period,followed by the contribution rate of PCOD up to 3.94%,while the long-term contribution rates of PSW,SIR and PNH3N were all less than 1%.The results show that the government should support the development of the tertiary industry to maintain the vitality of economic development and prevent environmental deterioration.
基金supported by the Leading Talent Support Program for Agricultural Talents of the Chinese Academy of Agricultural Sciences(TCS2022020)the General program of National Natural Science Foundation of China(1573263)。
文摘Rapidly expanding studies investigate the effects of e-commerce on company operations in the retail market.However,the interaction between agri-food e-commerce(AEC)and the traditional agri-food wholesale industry(AWI)has not received enough attention in the existing literature.Based on the provincial panel data from 2013 to 2020 in China,this paper examines the effect of AEC on AWI,comprising three dimensions:digitalization(DIGITAL),agrifood e-commerce infrastructure and supporting services(AECI),and agri-food e-commerce economy(AECE).First,AWI and AEC are measured using an entropy-based combination of indicators.The results indicate that for China as a whole,AWI has remained practically unchanged,whereas AEC exhibits a significant rising trend.Second,the findings of the fixed-effect regression reveal that DIGITAL and AECE tend to raise AWI,whereas AECI negatively affects AWI.Third,threshold regression results indicate that AECI tends to diminish AWI with three-stage inhibitory intensity,which manifests as a first increase and then a drop in the inhibition degree.These results suggest that with the introduction of e-commerce for agricultural product circulation,digital development will have catfish effects that tend to stimulate the vitality of the conventional wholesale industry and promote technical progress.Furthermore,the traditional wholesale industry benefits financially from e-commerce even while it diverts part of the traditional wholesale circulation for agricultural products.
文摘The advent of Industry 5.0 marks a transformative era where Cyber-Physical Systems(CPSs)seamlessly integrate physical processes with advanced digital technologies.However,as industries become increasingly interconnected and reliant on smart digital technologies,the intersection of physical and cyber domains introduces novel security considerations,endangering the entire industrial ecosystem.The transition towards a more cooperative setting,including humans and machines in Industry 5.0,together with the growing intricacy and interconnection of CPSs,presents distinct and diverse security and privacy challenges.In this regard,this study provides a comprehensive review of security and privacy concerns pertaining to CPSs in the context of Industry 5.0.The review commences by providing an outline of the role of CPSs in Industry 5.0 and then proceeds to conduct a thorough review of the different security risks associated with CPSs in the context of Industry 5.0.Afterward,the study also presents the privacy implications inherent in these systems,particularly in light of the massive data collection and processing required.In addition,the paper delineates potential avenues for future research and provides countermeasures to surmount these challenges.Overall,the study underscores the imperative of adopting comprehensive security and privacy strategies within the context of Industry 5.0.
文摘The steel industry is a major source of CO_(2) emissions,and thus,the mitigation of carbon emissions is the most pressing challenge in this sector.In this paper,international environmental governance in the steel industry is reviewed,and the current state of development of low-carbon technologies is discussed.Additionally,low-carbon pathways for the steel industry at the current time are proposed,emphasizing prevention and treatment strategies.Furthermore,the prospects of low-carbon technologies are explored from the perspective of transitioning the energy structure to a“carbon-electricity-hydrogen”relationship.Overall,steel enterprises should adopt hydrogen-rich metallurgical technologies that are compatible with current needs and process flows in the short term,based on the carbon substitution with hydrogen(prevention)and the CCU(CO_(2) capture and utilization)concepts(treatment).Additionally,the capture and utilization of CO_(2) for steelmaking,which can assist in achieving short-term emission reduction targets but is not a long-term solution,is discussed.In conclusion,in the long term,the carbon metallurgical process should be gradually supplanted by a hydrogen-electric synergistic approach,thus transforming the energy structure of existing steelmaking processes and attaining near-zero carbon emission steelmaking technology.