期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Thermal decomposition and oxidation of bastnaesite concentrate in inert and oxidative atmosphere 被引量:14
1
作者 Longsheng Zhao Liangshi Wang +3 位作者 Genghong Shuai Zhiqi Long Dali Cui Xiaowei Huang 《Journal of Rare Earths》 SCIE EI CAS CSCD 2018年第7期758-764,共7页
To clearly elucidate the oxidative roasting behaviors of the bastnaesite, the thermal decomposition and oxidation of the bastnaesite concentrate in inert and oxidative atmosphere have been investigated in detail. Expe... To clearly elucidate the oxidative roasting behaviors of the bastnaesite, the thermal decomposition and oxidation of the bastnaesite concentrate in inert and oxidative atmosphere have been investigated in detail. Experimental data indicated that the initial decomposition temperature of the concentrate under N2 atmosphere is 150 ℃ higher than that under O2 atmosphere,most likely because the oxidation of the cerium induces the decomposition of the concentrate. For the roasted samples under N2 atmosphere at500 ℃ and above,the oxidation efficiency of the cerium is 19.8%-26.8% because of the fact that rareearth fluorocarbonate is first decomposed to form rare-earth oxyfluoride and CO2, and the cerium oxyfluoride is then partially oxidized by the CO2 gas. The rest cerium in these samples can be further oxidized in air at room temperature, with the oxidation efficiency of the cerium gradually increasing to above 80% in 7 d. This can be attributed to the obvious changes in the inner morphology of the roasted samples under N2 atmosphere at high temperatures, which largely induce the diffusion of the air and improves the oxidation activity of CeOF, and further induces the oxidation of CeOF by the air. XRD and XPS techniques were used to further verify the significant differences in the thermal decomposition behaviors of the bastnaesite concentrate under N2 and O2 atmosphere. Moreover, no oxidation of Pr^(3+) to Pr^(4+) in the roasted samples under both N2 and O2 atmosphere is observed. This gives an overall understanding of the oxidative roasting of the bastnaesite concentrate without additives. 展开更多
关键词 BASTNAESITE Thermal decomposition Oxidation inert atmosphere Oxidative atmosphere Rare earths
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部