This paper presents the use of a computer method of the ventilation process simulation for the analysis of the flow distribution of air and gases in the area of wall mining work and the adjacent goaf.In workings and g...This paper presents the use of a computer method of the ventilation process simulation for the analysis of the flow distribution of air and gases in the area of wall mining work and the adjacent goaf.In workings and goaf,the complex issue of the formation of a gaseous atmosphere under variable ventilation conditions and an existing fire hazard level,with the possibility of feeding goaf with an additional carbon dioxide flux as the inertizing agent is considered.Some examples of the simulation of feeding goaf with carbon dioxide illustrating the different patterns of the distribution of the goaf atmosphere gases concentration,said distribution patterns being gas supply place dependent,have been presented.In addition,the impact of the additional sealing of goaf on the distribution level of the concentration of gases,the said sealing made from the wall side with chemical agents has also been considered.The capabilities of the VentGoaf computer simulation program,being the basis for our calculations,enable consideration of the use of the inert gases supplied to the goaf depending on: the location of the gas feeding the pipe outlet,tightness of the fire field,fire centre location,and spatial situation of the mined wall.It has been found that fire prevention elements,such as chemical sealing agents,are of great impact on the effectiveness of fire prevention.展开更多
According to the action law of gas flow during injecting inert gases as the research main line, and hydromechanics and thermodynamics theories, the characteristic of gas delamination that was caused by injecting inert...According to the action law of gas flow during injecting inert gases as the research main line, and hydromechanics and thermodynamics theories, the characteristic of gas delamination that was caused by injecting inert gases to closed fire zone was analyzed. The criterion was brought forward, which could scale disappearing probability of turbulent state. Formation mechanism of gas layer in turbulent state was discussed primarily. Simultaneously, the condition was pointed out, which could makc the gas in turbulent state by injecting different gases. The mathematical model about dynamic changes of oxygen and methane concentration in the process of injecting gases was erected. The mixture mechanism about injecting different flow inert gases and flammable gas layer in closed fire zone was revealed.展开更多
The natural gas in several gas fields in Pakistan is associated with varying percentages of inert gases(e.g.,CO;, N;, and H;S). The heating capacity of such natural gas is measured in British thermal units(BTU) in...The natural gas in several gas fields in Pakistan is associated with varying percentages of inert gases(e.g.,CO;, N;, and H;S). The heating capacity of such natural gas is measured in British thermal units(BTU) in Pakistan and is based on the combustion of the natural gases. The study area of this work belongs to the Middle Indus Basin, which also covers some parts of the Sulaiman Foldbelt and the Punjab Platform.Petroleum wells drilled in the study area contain inert gases(mostly CO;and N;) in varying percentages,which decreases the BTU value of sweet gases and the economic value of the gas reserves.Attempts were made to analyze the varying compositions of inert gases(mostly CO;and N;) along the deep-seated basement faults in the Zindapir Anticlinorium, eastern Sulaiman Foldbelt, but no specific relation could be established. Similarly, geothermal gradient zones were identified and the distribution of inert gases in these zones was studied, but even so, no well-established relation could be tracked.However, variations in the amounts of inert gases in the Chiltan Limestone of the Rodho Structure and the Afiband Structure point to the generation of in situ inert gases because both wells were drilled on the same anticlinorium and share the same geology, and possibly, the same source rock. Post-accumulation changes probably play an important role in the generation of in situ inert gases in varying concentrations.H;S is also present in some parts of the Indus Basin. Therefore, a brief discussion about the possible origin of the H;S is also included in this paper.展开更多
Ultrasonic irradiation was found to accelerate the rate of hydrolysis of omethoate in aqueous solution over the pH range of 2—12 Process parameters studied include pH, steady state temperature, concentration, and ...Ultrasonic irradiation was found to accelerate the rate of hydrolysis of omethoate in aqueous solution over the pH range of 2—12 Process parameters studied include pH, steady state temperature, concentration, and the type of gases. Greater than 96% hydrolysis was observed in 30 minutes through this process and the rate of destruction increased with the help of more soluble and low thermal inert gas. So with Krypton, omethoate was found to undergo rapid destruction as compared with Argon. In the presence of ultrasound, the observed first order rate of hydrolysis of omethoate is found to be independent of pH. The formation of transient supercritical water(SCW) appears to be an important factor in the acceleration of chemical reactions in the presence of ultrasound. A detailed chemical reaction mechanism for omethoate destruction in water was formulated. Experimental results and theoretical kinetic mechanism demonstrated that the most of the omethoate undergo destruction inside the cavitating holes. A very less effect of temperature on the degradation of omethoate within a temperature range of 20—70℃ proves that a small quantity of omethoate undergoes secondary destruction in the bulk liquid.展开更多
Fuel tank inerting technologies are able to reduce the fire risk by injection of inert gas into the ullage or fuel, the former called ullage washing and the latter fuel scrubbing. The Green On-Board Inert Gas Generati...Fuel tank inerting technologies are able to reduce the fire risk by injection of inert gas into the ullage or fuel, the former called ullage washing and the latter fuel scrubbing. The Green On-Board Inert Gas Generation System(GOBIGGS) is a novel technology based on flameless catalytic combustion, and owning to its simple structure and high inerting efficiency, it has received a lot of attentions. The inert gas in the GOBIGGS is mainly comprised of CO2, N2, and O2(hereinafter, Mixed Inert Gas(MIG)), while that in the On-Board Inert Gas Generation System(OBIGGS), which is one of the most widely used fuel tank inerting technologies, is NitrogenEnriched Air(NEA). The solubility of CO2 is nearly 20 times higher than that of N2 in jet fuels,so the inerting capability and performance are definitely disparate if the inert gas is selected as NEA or MIG. An inerting test bench was constructed to compare the inerting capabilities between NEA and MIG. Experimental results reveal that, if ullage washing is adopted, the variations of oxygen concentrations on the ullage and in the fuel are nearly identical no matter the inert gas is NEA or MIG. However, the ullage and dissolved oxygen concentrations of MIG scrubbing are always higher than those of NEA scrubbing.展开更多
Intrinsic stresses of carbon films deposited by direct current (DC) magnetron sputtering were investigated. The bombardments of energetic particles during the growth of films were considered to be the main reason fo...Intrinsic stresses of carbon films deposited by direct current (DC) magnetron sputtering were investigated. The bombardments of energetic particles during the growth of films were considered to be the main reason for compressive intrinsic stresses. The values of intrinsic stresses were determined by measuring the radius of curvature of substrates before and after film deposition. By varying argon pressure and target-substrate distance, energies of neutral carbon atoms impinging on the growing films were optimized to control the intrinsic stresses level. The stress evolution in carbon films as a function of film thickness was investigated and a void-related stress relief mechanism was proposed to interpret this evolution.展开更多
A wide variety of X-ray and extreme ultraviolet diagnostics are being developed to study on Yang accelerator. An elliptically bent crystal spectrometer is designed with a focal length of 1350 mm. A mica crystal with a...A wide variety of X-ray and extreme ultraviolet diagnostics are being developed to study on Yang accelerator. An elliptically bent crystal spectrometer is designed with a focal length of 1350 mm. A mica crystal with an interplanar spacing of 1.984 nm bent onto an elliptical substrate with eccentricity of 0.9485 is used. The crystal analyzer covers the Bragg angle range from 30° to 60°. The mica crystal can efficiently reflect radiation in multiple orders, covering the entire spectral range from 0.1 to 1.73 nm except for a gap from 0.86 to 1.0 nm. The application experiment is performed on Yang accelerator using the bent mica crystal analyzer. Spectra of neon-puff Z-pinch plasmas are recorded with a X-ray film, showing the H-like and the He-like lines of neon. Each spectrum has been identified and used for the wavelength calibration, and most of the line radiation is contained in the He-α and the L-α lines. The experimental results have demonstrated that the spectral resolution approximates 379.展开更多
The 5th -23sd high-order harmonics generation in rare gases in static gas target with 120-fs, 85-mJ/pulse, 10-Hz laser system was investigated. Compared with the traditional gas target, static gas target is simple to ...The 5th -23sd high-order harmonics generation in rare gases in static gas target with 120-fs, 85-mJ/pulse, 10-Hz laser system was investigated. Compared with the traditional gas target, static gas target is simple to be used in experiment, and the experimental parameters can be easily controlled. The effects on high-order harmonics due to laser intensities (energy), polarization, gas densities, confocal parameter, and phase mismatch were studied in this paper.展开更多
基金a part of research projects(NN524 368237)Financed by the Ministry of Science and Higher Education
文摘This paper presents the use of a computer method of the ventilation process simulation for the analysis of the flow distribution of air and gases in the area of wall mining work and the adjacent goaf.In workings and goaf,the complex issue of the formation of a gaseous atmosphere under variable ventilation conditions and an existing fire hazard level,with the possibility of feeding goaf with an additional carbon dioxide flux as the inertizing agent is considered.Some examples of the simulation of feeding goaf with carbon dioxide illustrating the different patterns of the distribution of the goaf atmosphere gases concentration,said distribution patterns being gas supply place dependent,have been presented.In addition,the impact of the additional sealing of goaf on the distribution level of the concentration of gases,the said sealing made from the wall side with chemical agents has also been considered.The capabilities of the VentGoaf computer simulation program,being the basis for our calculations,enable consideration of the use of the inert gases supplied to the goaf depending on: the location of the gas feeding the pipe outlet,tightness of the fire field,fire centre location,and spatial situation of the mined wall.It has been found that fire prevention elements,such as chemical sealing agents,are of great impact on the effectiveness of fire prevention.
文摘According to the action law of gas flow during injecting inert gases as the research main line, and hydromechanics and thermodynamics theories, the characteristic of gas delamination that was caused by injecting inert gases to closed fire zone was analyzed. The criterion was brought forward, which could scale disappearing probability of turbulent state. Formation mechanism of gas layer in turbulent state was discussed primarily. Simultaneously, the condition was pointed out, which could makc the gas in turbulent state by injecting different gases. The mathematical model about dynamic changes of oxygen and methane concentration in the process of injecting gases was erected. The mixture mechanism about injecting different flow inert gases and flammable gas layer in closed fire zone was revealed.
文摘The natural gas in several gas fields in Pakistan is associated with varying percentages of inert gases(e.g.,CO;, N;, and H;S). The heating capacity of such natural gas is measured in British thermal units(BTU) in Pakistan and is based on the combustion of the natural gases. The study area of this work belongs to the Middle Indus Basin, which also covers some parts of the Sulaiman Foldbelt and the Punjab Platform.Petroleum wells drilled in the study area contain inert gases(mostly CO;and N;) in varying percentages,which decreases the BTU value of sweet gases and the economic value of the gas reserves.Attempts were made to analyze the varying compositions of inert gases(mostly CO;and N;) along the deep-seated basement faults in the Zindapir Anticlinorium, eastern Sulaiman Foldbelt, but no specific relation could be established. Similarly, geothermal gradient zones were identified and the distribution of inert gases in these zones was studied, but even so, no well-established relation could be tracked.However, variations in the amounts of inert gases in the Chiltan Limestone of the Rodho Structure and the Afiband Structure point to the generation of in situ inert gases because both wells were drilled on the same anticlinorium and share the same geology, and possibly, the same source rock. Post-accumulation changes probably play an important role in the generation of in situ inert gases in varying concentrations.H;S is also present in some parts of the Indus Basin. Therefore, a brief discussion about the possible origin of the H;S is also included in this paper.
文摘Ultrasonic irradiation was found to accelerate the rate of hydrolysis of omethoate in aqueous solution over the pH range of 2—12 Process parameters studied include pH, steady state temperature, concentration, and the type of gases. Greater than 96% hydrolysis was observed in 30 minutes through this process and the rate of destruction increased with the help of more soluble and low thermal inert gas. So with Krypton, omethoate was found to undergo rapid destruction as compared with Argon. In the presence of ultrasound, the observed first order rate of hydrolysis of omethoate is found to be independent of pH. The formation of transient supercritical water(SCW) appears to be an important factor in the acceleration of chemical reactions in the presence of ultrasound. A detailed chemical reaction mechanism for omethoate destruction in water was formulated. Experimental results and theoretical kinetic mechanism demonstrated that the most of the omethoate undergo destruction inside the cavitating holes. A very less effect of temperature on the degradation of omethoate within a temperature range of 20—70℃ proves that a small quantity of omethoate undergoes secondary destruction in the bulk liquid.
基金supported by Funding of Jiangsu Innovation Program for Graduate Education of China (No.KYLX15_0231)Postgraduate Research & Practice Innovation Program of Jiangsu Province of China (No.KYCX17_0279)+1 种基金the Fundamental Research Funds for the Central Universities,Aviation Industry Corporation of China Technology Innovation Fund for Fundamental Research (No.2014D60931R)Funding of Ministry of Industry and Information Technology for Civil Aircraft
文摘Fuel tank inerting technologies are able to reduce the fire risk by injection of inert gas into the ullage or fuel, the former called ullage washing and the latter fuel scrubbing. The Green On-Board Inert Gas Generation System(GOBIGGS) is a novel technology based on flameless catalytic combustion, and owning to its simple structure and high inerting efficiency, it has received a lot of attentions. The inert gas in the GOBIGGS is mainly comprised of CO2, N2, and O2(hereinafter, Mixed Inert Gas(MIG)), while that in the On-Board Inert Gas Generation System(OBIGGS), which is one of the most widely used fuel tank inerting technologies, is NitrogenEnriched Air(NEA). The solubility of CO2 is nearly 20 times higher than that of N2 in jet fuels,so the inerting capability and performance are definitely disparate if the inert gas is selected as NEA or MIG. An inerting test bench was constructed to compare the inerting capabilities between NEA and MIG. Experimental results reveal that, if ullage washing is adopted, the variations of oxygen concentrations on the ullage and in the fuel are nearly identical no matter the inert gas is NEA or MIG. However, the ullage and dissolved oxygen concentrations of MIG scrubbing are always higher than those of NEA scrubbing.
基金the National Natural Sci-ence Foundation of China (No.10435050,10675092,and 10675091)the"863"Project Plan (No.2006AA12Z139)the Program for New Century Excellent Talents in University (No.NCET-04-0376).
文摘Intrinsic stresses of carbon films deposited by direct current (DC) magnetron sputtering were investigated. The bombardments of energetic particles during the growth of films were considered to be the main reason for compressive intrinsic stresses. The values of intrinsic stresses were determined by measuring the radius of curvature of substrates before and after film deposition. By varying argon pressure and target-substrate distance, energies of neutral carbon atoms impinging on the growing films were optimized to control the intrinsic stresses level. The stress evolution in carbon films as a function of film thickness was investigated and a void-related stress relief mechanism was proposed to interpret this evolution.
基金the National Natural Science Foundation of China under Grant No.10576041.
文摘A wide variety of X-ray and extreme ultraviolet diagnostics are being developed to study on Yang accelerator. An elliptically bent crystal spectrometer is designed with a focal length of 1350 mm. A mica crystal with an interplanar spacing of 1.984 nm bent onto an elliptical substrate with eccentricity of 0.9485 is used. The crystal analyzer covers the Bragg angle range from 30° to 60°. The mica crystal can efficiently reflect radiation in multiple orders, covering the entire spectral range from 0.1 to 1.73 nm except for a gap from 0.86 to 1.0 nm. The application experiment is performed on Yang accelerator using the bent mica crystal analyzer. Spectra of neon-puff Z-pinch plasmas are recorded with a X-ray film, showing the H-like and the He-like lines of neon. Each spectrum has been identified and used for the wavelength calibration, and most of the line radiation is contained in the He-α and the L-α lines. The experimental results have demonstrated that the spectral resolution approximates 379.
基金This work was supported by the National Technology Project of China under Grant No. 863-804-7.
文摘The 5th -23sd high-order harmonics generation in rare gases in static gas target with 120-fs, 85-mJ/pulse, 10-Hz laser system was investigated. Compared with the traditional gas target, static gas target is simple to be used in experiment, and the experimental parameters can be easily controlled. The effects on high-order harmonics due to laser intensities (energy), polarization, gas densities, confocal parameter, and phase mismatch were studied in this paper.