A new method to solve the boundary value problem arising in the study of scattering of two-dimensional surface water waves by a discontinuity in the surface boundary conditions is presented in this paper. The disconti...A new method to solve the boundary value problem arising in the study of scattering of two-dimensional surface water waves by a discontinuity in the surface boundary conditions is presented in this paper. The discontinuity arises due to the floating of two semi-infinite inertial surfaces of different surface densities. Applying Green's second identity to the potential functions and appropriate Green's functions, this problem is reduced to solving two coupled Fredholm integral equations with regular kernels. The solutions to these integral equations are used to determine the reflection and the transmission coefficients. The results for the reflection coefficient are presented graphically and are compared to those obtained earlier using other research methods. It is observed from the graphs that the results computed from the present analysis match exactly with the previous results.展开更多
Aquatic vegetation zone is now receiving an increasing attention as an effective way to protect the shorelines and riverbeds. To simulate the flow through the vegetation zone, the vegetation elements are often simplif...Aquatic vegetation zone is now receiving an increasing attention as an effective way to protect the shorelines and riverbeds. To simulate the flow through the vegetation zone, the vegetation elements are often simplified as equidistant rigid cylinders, and in the whole zone, the porous media approach can be applied. In this study, a non-constant inertial resistance coefficient is introduced to model the unevenly distribution of the drag forces on the cylinders, and an improved porous media approach is applied to one circular array of cylinders positioned in a 2-D flume. The calculated velocity profile is consistent with the experimental data.展开更多
基金Partially Supported by a DST Research Project to RG(No.SR/FTP/MS-020/2010)
文摘A new method to solve the boundary value problem arising in the study of scattering of two-dimensional surface water waves by a discontinuity in the surface boundary conditions is presented in this paper. The discontinuity arises due to the floating of two semi-infinite inertial surfaces of different surface densities. Applying Green's second identity to the potential functions and appropriate Green's functions, this problem is reduced to solving two coupled Fredholm integral equations with regular kernels. The solutions to these integral equations are used to determine the reflection and the transmission coefficients. The results for the reflection coefficient are presented graphically and are compared to those obtained earlier using other research methods. It is observed from the graphs that the results computed from the present analysis match exactly with the previous results.
基金Project supported by the Special Fund of Marine-Fishery Science-Technology Extension in Guangdong Province(Grant No.A201401B08)
文摘Aquatic vegetation zone is now receiving an increasing attention as an effective way to protect the shorelines and riverbeds. To simulate the flow through the vegetation zone, the vegetation elements are often simplified as equidistant rigid cylinders, and in the whole zone, the porous media approach can be applied. In this study, a non-constant inertial resistance coefficient is introduced to model the unevenly distribution of the drag forces on the cylinders, and an improved porous media approach is applied to one circular array of cylinders positioned in a 2-D flume. The calculated velocity profile is consistent with the experimental data.