In the practice of control the industrial processes, proportional-integral-derivative controller remains pivotal due to its simple structure and system performance-oriented tuning process. In this paper are presented ...In the practice of control the industrial processes, proportional-integral-derivative controller remains pivotal due to its simple structure and system performance-oriented tuning process. In this paper are presented two approaches for synthesis the proportional-integral-derivative controller to the models of objects with inertia, that offer the procedure of system performance optimization based on maximum stability degree criterion. The proposed algorithms of system performance optimization were elaborated for model of objects with inertia second and third order and offer simple analytical expressions for tuning the PID controller. Validation and verification are conducted through computer simulations using MATLAB, demonstrating successful performance optimization and showcasing the effectiveness PID controllers’ tuning. The proposed approaches contribute insights to the field of control, offering a pathway for optimizing the performance of second and third-order inertial systems through robust controller synthesis.展开更多
Pedestrian positioning system(PPS)using wearable inertial sensors has wide applications towards various emerging fields such as smart healthcare,emergency rescue,soldier positioning,etc.The performance of traditional ...Pedestrian positioning system(PPS)using wearable inertial sensors has wide applications towards various emerging fields such as smart healthcare,emergency rescue,soldier positioning,etc.The performance of traditional PPS is limited by the cumulative error of inertial sensors,complex motion modes of pedestrians,and the low robustness of the multi-sensor collaboration structure.This paper presents a hybrid pedestrian positioning system using the combination of wearable inertial sensors and ultrasonic ranging(H-PPS).A robust two nodes integration structure is developed to adaptively combine the motion data acquired from the single waist-mounted and foot-mounted node,and enhanced by a novel ellipsoid constraint model.In addition,a deep-learning-based walking speed estimator is proposed by considering all the motion features provided by different nodes,which effectively reduces the cumulative error originating from inertial sensors.Finally,a comprehensive data and model dual-driven model is presented to effectively combine the motion data provided by different sensor nodes and walking speed estimator,and multi-level constraints are extracted to further improve the performance of the overall system.Experimental results indicate that the proposed H-PPS significantly improves the performance of the single PPS and outperforms existing algorithms in accuracy index under complex indoor scenarios.展开更多
It remains a great challenge to understand the hydrates involved in phenomena in practical oil and gas systems.The adhesion forces between hydrate particles,between hydrate particles and pipe walls,and between hydrate...It remains a great challenge to understand the hydrates involved in phenomena in practical oil and gas systems.The adhesion forces between hydrate particles,between hydrate particles and pipe walls,and between hydrate particles and reservoir particles are essential factors that control the behaviors of clathrate hydrates in different applications.In this review,we summarize the typical micro-force measurement apparatus and methods utilized to study hydrate particle systems.In addition,the adhesion test results,the related understandings,and the applied numerical calculation models are systematically discussed.展开更多
This study aims to improve the accuracy and safety of steel plate thickness calibration.A differential noncontact thickness measurement calibration system based on laser displacement sensors was designed to address th...This study aims to improve the accuracy and safety of steel plate thickness calibration.A differential noncontact thickness measurement calibration system based on laser displacement sensors was designed to address the problems of low precision of traditional contact thickness gauges and radiation risks of radiation-based thickness gauges.First,the measurement method and measurement structure of the thickness calibration system were introduced.Then,the hardware circuit of the thickness system was established based on the STM32 core chip.Finally,the system software was designed to implement system control to filter algorithms and human-computer interaction.Experiments have proven the excellent performance of the differential noncontact thickness measurement calibration system based on laser displacement sensors,which not only considerably improves measurement accuracy but also effectively reduces safety risks during the measurement process.The system offers guiding significance and application value in the field of steel plate production and processing.展开更多
We have succeeded in 2-slit interference simulation by assuming that a travelling particle interacts with its environment, getting information on the environmental condition according to the adaptive dynamics by Ohya,...We have succeeded in 2-slit interference simulation by assuming that a travelling particle interacts with its environment, getting information on the environmental condition according to the adaptive dynamics by Ohya, thus proposed the possibility that the entanglement comes from the interaction with the environment (Ando et al., 2023). This concept means that there should be no isolated or inertial system other than our unique universe space. Taking this message into account and assuming that the signal velocity is constant against our unique universe space, we reconsidered the inertial system and relativity theory by Galilei and Einstein and found several misunderstandings and errors. Time delay and Lorentz shrinkage were derived similarly to the prediction by special relativity theory, but Lorentz transformation and 4-dimensional time/space view were not. They must have implicitly and unconsciously assumed that any signals transfer information without giving any influences to any systems different from our adaptive dynamical view. We propose that their relativity theories should be reinterpreted in view of adaptive dynamics.展开更多
A dedicated weak current measurement system was designed to measure the weak currents generated by the neutron ionization chamber.This system incorporates a second-order low-pass filter circuit and the Kalman filterin...A dedicated weak current measurement system was designed to measure the weak currents generated by the neutron ionization chamber.This system incorporates a second-order low-pass filter circuit and the Kalman filtering algorithm to effectively filter out noise and minimize interference in the measurement results.Testing conducted under normal temperature conditions has demonstrated the system's high precision performance.However,it was observed that temperature variations can affect the measurement performance.Data were collected across temperatures ranging from -20 to 70℃,and a temperature correction model was established through linear regression fitting to address this issue.The feasibility of the temperature correction model was confirmed at temperatures of -5 and 40℃,where relative errors remained below 0.1% after applying the temperature correction.The research indicates that the designed measurement system exhibits excellent temperature adaptability and high precision,making it particularly suitable for measuring weak currents.展开更多
Purpose – Straightness measurement of rail weld joint is of essential importance to railway maintenance. Dueto the lack of efficient measurement equipment, there has been limited in-depth research on rail weld joint ...Purpose – Straightness measurement of rail weld joint is of essential importance to railway maintenance. Dueto the lack of efficient measurement equipment, there has been limited in-depth research on rail weld joint with a5-m wavelength range, leaving a significant knowledge gap in this field.Design/methodology/approach – In this study, the authors used the well-established inertial referencemethod (IR-method), and the state-of-the-art multi-point chord reference method (MCR-method). Two methodshave been applied in different types of rail straightness measurement trollies, respectively. These instrumentswere tested in a high-speed rail section within a certain region of China. The test results were ultimatelyvalidated through using traditional straightedge and feeler gauge methods as reference data to evaluate the railweld joint straightness within the 5-m wavelength range.Findings – The research reveals that IR-method and MCR-method produce reasonably similar measurementresults for wavelengths below 1 m. However, MCR-method outperforms IR-method in terms of accuracy forwavelengths exceeding 3 m. Furthermore, it was observed that IR-method, while operating at a slower speed,carries the risk of derailing and is incapable of detecting rail weld joints and low joints within the track.Originality/value – The research compare two methods’ measurement effects in a longer wavelength rangeand demonstrate the superiority of MCR-method.展开更多
Inertial reference system is one of the airborne equipment.According to the requirements of SAE ARP4754A Guidelines for Development of Civil Aircraft and Systems,MC9 equipment qualification test is needed to verify th...Inertial reference system is one of the airborne equipment.According to the requirements of SAE ARP4754A Guidelines for Development of Civil Aircraft and Systems,MC9 equipment qualification test is needed to verify that the inertial reference system can perform reservation function under specified service conditions.That is,the inertial reference system shall pass certain environmental tests specified in DO⁃160G.Some tests are faced with the problem that the test equipment should have the function requirements of isolation protection and load simulation.Therefore,a kind of test equipment which can provide isolation protection and simulate load function in the test is designed.展开更多
In order to stabilize the video module to build digital image stabilization image sequence, a method of using inertial measurement system is proposed. Through applying real-time attitude in- formation of the camera th...In order to stabilize the video module to build digital image stabilization image sequence, a method of using inertial measurement system is proposed. Through applying real-time attitude in- formation of the camera that obtained by high-precision attitude sensor to estimate the image motion vector and then to compensate for image, the purpose of stabilizing the image sequence can be a- chieved. Experiments demonstrate that this method has a high image stabilization precision, and the up to 16 frame/s video output rate completely meets the real-time requirements.展开更多
The mathematical model that approximates the dynamics of the industrial process is essential for the efficient synthesis of control algorithms in industrial applications. The model of the process can be obtained accor...The mathematical model that approximates the dynamics of the industrial process is essential for the efficient synthesis of control algorithms in industrial applications. The model of the process can be obtained according to the identification procedures in the open-loop, or in the closed-loop. In the open-loop, the identification methods are well known and offer good process approximation, which is not valid for the closed-loop identification, when the system provides the feedback output and doesn’t permit it to be identified in the open-loop. This paper offers an approach for experimental identification in the closed-loop, which supposes the approximation of the process with inertial models, with or without time delay and astatism. The coefficients are calculated based on the values of the critical transfer coefficient and period of the underdamped response of the closed-loop system with P controller, when system achieves the limit of stability. Finally, the closed-loop identification was verified by the computer simulation and the obtained results demonstrated, that the identification procedure in the closed-loop offers good results in process of estimation of the model of the process.展开更多
In this paper,an improved spatio-temporal alignment measurement method is presented to address the inertial matching measurement of hull deformation under the coexistence of time delay and large misalignment angle.Lar...In this paper,an improved spatio-temporal alignment measurement method is presented to address the inertial matching measurement of hull deformation under the coexistence of time delay and large misalignment angle.Large misalignment angle and time delay often occur simultaneously and bring great challenges to the accurate measurement of hull deformation in space and time.The proposed method utilizes coarse alignment with large misalignment angle and time delay estimation of inertial measurement unit modeling to establish a brand-new spatiotemporal aligned hull deformation measurement model.In addition,two-step loop control is designed to ensure the accurate description of dynamic deformation angle and static deformation angle by the time-space alignment method of hull deformation.The experiments illustrate that the proposed method can effectively measure the hull deformation angle when time delay and large misalignment angle coexist.展开更多
A method was proposed to analyze the influences of the non-ideal spectroscopic performance of optical components and orientation errors of a laser tracing measurement optical system on the tracing measurement performa...A method was proposed to analyze the influences of the non-ideal spectroscopic performance of optical components and orientation errors of a laser tracing measurement optical system on the tracing measurement performance.A comprehensive model of the interference fringe contrast based on the laser tracing system s measurement principle was established in this study.Simulation results based on ZEMAX verified the model.According to the simulation results,the placement angle of the analyzer had a direct influence on the interference fringe contrast.When the angle of the polarized light to the analyzer’s transmission axis increased from 65°to 85°,each contrast of the four-way interference fringes decreased from 0.9996 to 0.3528,the interference fringe contrast is decreased by 65%.Under the split ratio of beam splitters in the interference part(BS 1)of 5∶5,when the splitting ratio of BS 2 changed from 2∶8 to 8∶2,the fringe contrast of the interference signals received by the photodetectors increased,but the injection light intensity onto the PSD reflected by BS 2 decreased.The significant influence of the tracing performance was verified by the experiments.When splitting ratio of BS 2 increased,the contrast of the interference fringes increased.Due to the weakening of the incident light intensity of the PSD caused by the change of BS 2 splitting ratio,the response time of the tracing system is increased by 23.7 ms.As a result,the tracing performance of the laser tracing measurement optical system was degraded.An important theoretical basis was provided to evaluate and improve the accuracy and reliability of laser tracing measurement systems.展开更多
The inertial navigation system(INS),which is frequently used in emergency rescue operations and other situations,has the benefits of not relying on infrastructure,high positioning frequency,and strong real-time perfor...The inertial navigation system(INS),which is frequently used in emergency rescue operations and other situations,has the benefits of not relying on infrastructure,high positioning frequency,and strong real-time performance.However,the intricate and unpredictable pedestrian motion patterns lead the INS localization error to significantly diverge with time.This paper aims to enhance the accuracy of zero-velocity interval(ZVI)detection and reduce the heading and altitude drift of foot-mounted INS via deep learning and equation constraint of dual feet.Aiming at the observational noise problem of low-cost inertial sensors,we utilize a denoising autoencoder to automatically eliminate the inherent noise.Aiming at the problem that inaccurate detection of the ZVI detection results in obvious displacement error,we propose a sample-level ZVI detection algorithm based on the U-Net neural network,which effectively solves the problem of mislabeling caused by sliding windows.Aiming at the problem that Zero-Velocity Update(ZUPT)cannot suppress heading and altitude error,we propose a bipedal INS method based on the equation constraint and ellipsoid constraint,which uses foot-to-foot distance as a new observation to correct heading and altitude error.We conduct extensive and well-designed experiments to evaluate the performance of the proposed method.The experimental results indicate that the position error of our proposed method did not exceed 0.83% of the total traveled distance.展开更多
Glacier disasters occur frequently in alpine regions around the world,but the current conventional geological disaster measurement technology cannot be directly used for glacier disaster measurement.Hence,in this stud...Glacier disasters occur frequently in alpine regions around the world,but the current conventional geological disaster measurement technology cannot be directly used for glacier disaster measurement.Hence,in this study,a distributed multi-sensor measurement system for glacier deformation was established by integrating piezoelectric sensing,coded sensing,attitude sensing technology and wireless communication technology.The traditional Modbus protocol was optimized to solve the problem of data identification confusion of different acquisition nodes.Through indoor wireless transmission,adaptive performance analysis,error measurement experiment and landslide simulation experiment,the performance of the measurement system was analyzed and evaluated.Using unmanned aerial vehicle technology,the reliability and effectiveness of the measurement system were verified on the site of Galongla glacier in southeastern Tibet,China.The results show that the mean absolute percentage errors were only 1.13%and 2.09%for the displacement and temperature,respectively.The distributed glacier deformation real-time measurement system provides a new means for the assessment of the development process of glacier disasters and disaster prevention and mitigation.展开更多
In the traditional fringe projection profilometry system,the projector and the camera light center are both spatially virtual points.The spatial position relationships specified in the model are not easy to obtain,lea...In the traditional fringe projection profilometry system,the projector and the camera light center are both spatially virtual points.The spatial position relationships specified in the model are not easy to obtain,leading to inaccurate system parameters and affectingmeasurement accuracy.This paper proposes a method for solving the system parameters of the fringe projection profilometry system,and the spatial position of the camera and projector can be adjusted in accordance with the obtained calibration parameters.The steps are as follows:First,in accordance with the conversion relationship of the coordinate system in the calibration process,the calculation formula of the vertical distance from the camera light center to the reference plane and the calculation formula of the distance between the projector and the camera light center are given respectively.Secondly,according to the projector calibration principle,the position of the projector light axis perpendicular to the reference plane is gained by comparing the parallel relationship between the reference plane coordinate system and the projector coordinate system’s Z-axis.Then,in order to fulfill the position restriction that the line between the projector light center and the camera light center must be parallel to the reference plane,the camera’s spatial location is adjusted so that the vertical distance between it and the reference plane tends to that between the projector light center and the reference plane.And finally,the three-dimensional(3D)reconstruction of the target object can be finished using the phase height model’s system parameters once the aforementioned position limitations are put into practice.Experimental results demonstrate that the method improves the measurement accuracy,and verifies that it is effective and available in 3D shape measurement.展开更多
State departments of transportation’s (DOTs) decisions to invest resources to expand or implement intelligent transportation systems (ITS) programs or even retire existing infrastructure need to be based on performan...State departments of transportation’s (DOTs) decisions to invest resources to expand or implement intelligent transportation systems (ITS) programs or even retire existing infrastructure need to be based on performance evaluations. Nonetheless, an apparent gap exists between the need for ITS performance measurements and the actual implementation. The evidence available points to challenges in the ITS performance measurement processes. This paper evaluated the state of practice of performance measurement for ITS across the US and provided insights. A comprehensive literature review assessed the use of performance measures by DOTs for monitoring implemented ITS programs. Based on the gaps identified through the literature review, a nationwide qualitative survey was used to gather insights from key stakeholders on the subject matter and presented in this paper. From the data gathered, performance measurement of ITS is fairly integrated into ITS programs by DOTs, with most agencies considering the process beneficial. There, however, exist reasons that prevent agencies from measuring ITS performance to greater detail and quality. These include lack of data, fragmented or incomparable data formats, the complexity of the endeavor, lack of data scientists, and difficulty assigning responsibilities when inter-agency collaboration is required. Additionally, DOTs do not benchmark or compare their ITS performance with others for reasons that include lack of data, lack of guidance or best practices, and incomparable data formats. This paper is relevant as it provides insights expected to guide DOTs and other agencies in developing or reevaluating their ITS performance measurement processes.展开更多
The accurate measurement of parameters such as the cavity-loaded quality factor(Q_(L))and half bandwidth(f_(0.5))is essential for monitoring the performance of superconducting radio-frequency cavities.However,the conv...The accurate measurement of parameters such as the cavity-loaded quality factor(Q_(L))and half bandwidth(f_(0.5))is essential for monitoring the performance of superconducting radio-frequency cavities.However,the conventional"field decay method"employed to calibrate these values requires the cavity to satisfy a"zero-input"condition.This can be challenging when the source impedance is mismatched and produce nonzero forward signals(V_(f))that significantly affect the measurement accuracy.To address this limitation,we developed a modified version of the"field decay method"based on the cavity differential equation.The proposed approach enables the precise calibration of f_(0.5) even under mismatch conditions.We tested the proposed approach on the SRF cavities of the Chinese Accelerator-Driven System Front-End Demo Superconducting Linac and compared the results with those obtained from a network analyzer.The two sets of results were consistent,indicating the usefulness of the proposed approach.展开更多
This research introduces a challenge in integrating and cleaning the data,which is a crucial task in object matching.While the object is detected and then measured,the vibration at different light intensities may influ...This research introduces a challenge in integrating and cleaning the data,which is a crucial task in object matching.While the object is detected and then measured,the vibration at different light intensities may influence the durability and reliability of mechanical systems or structures and cause problems such as damage,abnormal stopping,and disaster.Recent research failed to improve the accuracy rate and the computation time in tracking an object and in the vibration measurement.To solve all these problems,this proposed research simplifies the scaling factor determination by assigning a known real-world dimension to a predetermined portion of the image.A novel white color sticker of the known dimensions marked with a color dot is pasted on the surface of an object for the best result in the template matching using the Improved Up-Sampled Cross-Correlation(UCC)algorithm.The vibration measurement is calculated using the Finite-Difference Algorithm(FDA),a machine vision systemfitted with a macro lens sensor that is capable of capturing the image at a closer range,which does not affect the quality of displacement measurement from the video frames.Thefield test was conducted on the TAFE(Tractors and Farm Equipment Limited)tractor parts,and the percentage of error was recorded between 30%and 50%at very low vibration values close to zero,whereas it was recorded between 5%and 10%error in most high-accelerations,the essential range for vibration analysis.Finally,the suggested system is more suitable for measuring the vibration of stationary machinery having low frequency ranges.The use of a macro lens enables to capture of image frames at very close-ups.A 30%to 50%error percentage has been reported when the vibration amplitude is very small.Therefore,this study is not suitable for Nano vibration analysis.展开更多
This article studies distributed pose(orientation and position)estimation of leader–follower multi-agent systems over𝜅-layer graphs in 2-D plane.Only the leaders have access to their orientations and position...This article studies distributed pose(orientation and position)estimation of leader–follower multi-agent systems over𝜅-layer graphs in 2-D plane.Only the leaders have access to their orientations and positions,while the followers can measure the relative bearings or(angular and linear)velocities in their unknown local coordinate frames.For the orientation estimation,the local relative bearings are used to obtain the relative orientations among the agents,based on which a distributed orientation estimation algorithm is proposed for each follower to estimate its orientation.For the position estimation,the local relative bearings are used to obtain the position constraints among the agents,and a distributed position estimation algorithm is proposed for each follower to estimate its position by solving its position constraints.Both the orientation and position estimation errors converge to zero asymptotically.A simulation example is given to verify the theoretical results.展开更多
This paper studies a strongly convergent inertial forward-backward-forward algorithm for the variational inequality problem in Hilbert spaces.In our convergence analysis,we do not assume the on-line rule of the inerti...This paper studies a strongly convergent inertial forward-backward-forward algorithm for the variational inequality problem in Hilbert spaces.In our convergence analysis,we do not assume the on-line rule of the inertial parameters and the iterates,which have been assumed by several authors whenever a strongly convergent algorithm with an inertial extrapolation step is proposed for a variational inequality problem.Consequently,our proof arguments are different from what is obtainable in the relevant literature.Finally,we give numerical tests to confirm the theoretical analysis and show that our proposed algorithm is superior to related ones in the literature.展开更多
文摘In the practice of control the industrial processes, proportional-integral-derivative controller remains pivotal due to its simple structure and system performance-oriented tuning process. In this paper are presented two approaches for synthesis the proportional-integral-derivative controller to the models of objects with inertia, that offer the procedure of system performance optimization based on maximum stability degree criterion. The proposed algorithms of system performance optimization were elaborated for model of objects with inertia second and third order and offer simple analytical expressions for tuning the PID controller. Validation and verification are conducted through computer simulations using MATLAB, demonstrating successful performance optimization and showcasing the effectiveness PID controllers’ tuning. The proposed approaches contribute insights to the field of control, offering a pathway for optimizing the performance of second and third-order inertial systems through robust controller synthesis.
基金supported by the National Natural Science Foundation of China under(Grant No.52175531)in part by the Science and Technology Research Program of Chongqing Municipal Education Commission under Grant(Grant Nos.KJQN202000605 and KJZD-M202000602)。
文摘Pedestrian positioning system(PPS)using wearable inertial sensors has wide applications towards various emerging fields such as smart healthcare,emergency rescue,soldier positioning,etc.The performance of traditional PPS is limited by the cumulative error of inertial sensors,complex motion modes of pedestrians,and the low robustness of the multi-sensor collaboration structure.This paper presents a hybrid pedestrian positioning system using the combination of wearable inertial sensors and ultrasonic ranging(H-PPS).A robust two nodes integration structure is developed to adaptively combine the motion data acquired from the single waist-mounted and foot-mounted node,and enhanced by a novel ellipsoid constraint model.In addition,a deep-learning-based walking speed estimator is proposed by considering all the motion features provided by different nodes,which effectively reduces the cumulative error originating from inertial sensors.Finally,a comprehensive data and model dual-driven model is presented to effectively combine the motion data provided by different sensor nodes and walking speed estimator,and multi-level constraints are extracted to further improve the performance of the overall system.Experimental results indicate that the proposed H-PPS significantly improves the performance of the single PPS and outperforms existing algorithms in accuracy index under complex indoor scenarios.
基金supported by the National Key Research and Development Project (No.2018YFE0126400)Key Program of Marine Economy Development (Six Marine Industries)Special Foundation of Department of Natural Resources of Guangdong Province (GDNRC[2020]047)。
文摘It remains a great challenge to understand the hydrates involved in phenomena in practical oil and gas systems.The adhesion forces between hydrate particles,between hydrate particles and pipe walls,and between hydrate particles and reservoir particles are essential factors that control the behaviors of clathrate hydrates in different applications.In this review,we summarize the typical micro-force measurement apparatus and methods utilized to study hydrate particle systems.In addition,the adhesion test results,the related understandings,and the applied numerical calculation models are systematically discussed.
文摘This study aims to improve the accuracy and safety of steel plate thickness calibration.A differential noncontact thickness measurement calibration system based on laser displacement sensors was designed to address the problems of low precision of traditional contact thickness gauges and radiation risks of radiation-based thickness gauges.First,the measurement method and measurement structure of the thickness calibration system were introduced.Then,the hardware circuit of the thickness system was established based on the STM32 core chip.Finally,the system software was designed to implement system control to filter algorithms and human-computer interaction.Experiments have proven the excellent performance of the differential noncontact thickness measurement calibration system based on laser displacement sensors,which not only considerably improves measurement accuracy but also effectively reduces safety risks during the measurement process.The system offers guiding significance and application value in the field of steel plate production and processing.
文摘We have succeeded in 2-slit interference simulation by assuming that a travelling particle interacts with its environment, getting information on the environmental condition according to the adaptive dynamics by Ohya, thus proposed the possibility that the entanglement comes from the interaction with the environment (Ando et al., 2023). This concept means that there should be no isolated or inertial system other than our unique universe space. Taking this message into account and assuming that the signal velocity is constant against our unique universe space, we reconsidered the inertial system and relativity theory by Galilei and Einstein and found several misunderstandings and errors. Time delay and Lorentz shrinkage were derived similarly to the prediction by special relativity theory, but Lorentz transformation and 4-dimensional time/space view were not. They must have implicitly and unconsciously assumed that any signals transfer information without giving any influences to any systems different from our adaptive dynamical view. We propose that their relativity theories should be reinterpreted in view of adaptive dynamics.
基金supported by the Youth Science Foundation of Sichuan Province(Nos.2022NSFSC1230 and 2022NSFSC1231)the Science and Technology Innovation Seedling Project of Sichuan Province(No.MZGC20230080)+1 种基金the General project of the National Natural Science Foundation of China(No.12075039)the Key project of the National Natural Science Foundation of China(No.U19A2086)。
文摘A dedicated weak current measurement system was designed to measure the weak currents generated by the neutron ionization chamber.This system incorporates a second-order low-pass filter circuit and the Kalman filtering algorithm to effectively filter out noise and minimize interference in the measurement results.Testing conducted under normal temperature conditions has demonstrated the system's high precision performance.However,it was observed that temperature variations can affect the measurement performance.Data were collected across temperatures ranging from -20 to 70℃,and a temperature correction model was established through linear regression fitting to address this issue.The feasibility of the temperature correction model was confirmed at temperatures of -5 and 40℃,where relative errors remained below 0.1% after applying the temperature correction.The research indicates that the designed measurement system exhibits excellent temperature adaptability and high precision,making it particularly suitable for measuring weak currents.
文摘Purpose – Straightness measurement of rail weld joint is of essential importance to railway maintenance. Dueto the lack of efficient measurement equipment, there has been limited in-depth research on rail weld joint with a5-m wavelength range, leaving a significant knowledge gap in this field.Design/methodology/approach – In this study, the authors used the well-established inertial referencemethod (IR-method), and the state-of-the-art multi-point chord reference method (MCR-method). Two methodshave been applied in different types of rail straightness measurement trollies, respectively. These instrumentswere tested in a high-speed rail section within a certain region of China. The test results were ultimatelyvalidated through using traditional straightedge and feeler gauge methods as reference data to evaluate the railweld joint straightness within the 5-m wavelength range.Findings – The research reveals that IR-method and MCR-method produce reasonably similar measurementresults for wavelengths below 1 m. However, MCR-method outperforms IR-method in terms of accuracy forwavelengths exceeding 3 m. Furthermore, it was observed that IR-method, while operating at a slower speed,carries the risk of derailing and is incapable of detecting rail weld joints and low joints within the track.Originality/value – The research compare two methods’ measurement effects in a longer wavelength rangeand demonstrate the superiority of MCR-method.
文摘Inertial reference system is one of the airborne equipment.According to the requirements of SAE ARP4754A Guidelines for Development of Civil Aircraft and Systems,MC9 equipment qualification test is needed to verify that the inertial reference system can perform reservation function under specified service conditions.That is,the inertial reference system shall pass certain environmental tests specified in DO⁃160G.Some tests are faced with the problem that the test equipment should have the function requirements of isolation protection and load simulation.Therefore,a kind of test equipment which can provide isolation protection and simulate load function in the test is designed.
文摘In order to stabilize the video module to build digital image stabilization image sequence, a method of using inertial measurement system is proposed. Through applying real-time attitude in- formation of the camera that obtained by high-precision attitude sensor to estimate the image motion vector and then to compensate for image, the purpose of stabilizing the image sequence can be a- chieved. Experiments demonstrate that this method has a high image stabilization precision, and the up to 16 frame/s video output rate completely meets the real-time requirements.
文摘The mathematical model that approximates the dynamics of the industrial process is essential for the efficient synthesis of control algorithms in industrial applications. The model of the process can be obtained according to the identification procedures in the open-loop, or in the closed-loop. In the open-loop, the identification methods are well known and offer good process approximation, which is not valid for the closed-loop identification, when the system provides the feedback output and doesn’t permit it to be identified in the open-loop. This paper offers an approach for experimental identification in the closed-loop, which supposes the approximation of the process with inertial models, with or without time delay and astatism. The coefficients are calculated based on the values of the critical transfer coefficient and period of the underdamped response of the closed-loop system with P controller, when system achieves the limit of stability. Finally, the closed-loop identification was verified by the computer simulation and the obtained results demonstrated, that the identification procedure in the closed-loop offers good results in process of estimation of the model of the process.
基金supported by Beijing Insititute of Technology Research Fund Program for Young Scholars(2020X04104)。
文摘In this paper,an improved spatio-temporal alignment measurement method is presented to address the inertial matching measurement of hull deformation under the coexistence of time delay and large misalignment angle.Large misalignment angle and time delay often occur simultaneously and bring great challenges to the accurate measurement of hull deformation in space and time.The proposed method utilizes coarse alignment with large misalignment angle and time delay estimation of inertial measurement unit modeling to establish a brand-new spatiotemporal aligned hull deformation measurement model.In addition,two-step loop control is designed to ensure the accurate description of dynamic deformation angle and static deformation angle by the time-space alignment method of hull deformation.The experiments illustrate that the proposed method can effectively measure the hull deformation angle when time delay and large misalignment angle coexist.
基金Sponsored by the National Natural Science Foundation of China(Grant No.52175491).
文摘A method was proposed to analyze the influences of the non-ideal spectroscopic performance of optical components and orientation errors of a laser tracing measurement optical system on the tracing measurement performance.A comprehensive model of the interference fringe contrast based on the laser tracing system s measurement principle was established in this study.Simulation results based on ZEMAX verified the model.According to the simulation results,the placement angle of the analyzer had a direct influence on the interference fringe contrast.When the angle of the polarized light to the analyzer’s transmission axis increased from 65°to 85°,each contrast of the four-way interference fringes decreased from 0.9996 to 0.3528,the interference fringe contrast is decreased by 65%.Under the split ratio of beam splitters in the interference part(BS 1)of 5∶5,when the splitting ratio of BS 2 changed from 2∶8 to 8∶2,the fringe contrast of the interference signals received by the photodetectors increased,but the injection light intensity onto the PSD reflected by BS 2 decreased.The significant influence of the tracing performance was verified by the experiments.When splitting ratio of BS 2 increased,the contrast of the interference fringes increased.Due to the weakening of the incident light intensity of the PSD caused by the change of BS 2 splitting ratio,the response time of the tracing system is increased by 23.7 ms.As a result,the tracing performance of the laser tracing measurement optical system was degraded.An important theoretical basis was provided to evaluate and improve the accuracy and reliability of laser tracing measurement systems.
基金supported in part by National Key Research and Development Program under Grant No.2020YFB1708800China Postdoctoral Science Foundation under Grant No.2021M700385+5 种基金Guang Dong Basic and Applied Basic Research Foundation under Grant No.2021A1515110577Guangdong Key Research and Development Program under Grant No.2020B0101130007Central Guidance on Local Science and Technology Development Fund of Shanxi Province under Grant No.YDZJSX2022B019Fundamental Research Funds for Central Universities under Grant No.FRF-MP-20-37Interdisciplinary Research Project for Young Teachers of USTB(Fundamental Research Funds for the Central Universities)under Grant No.FRF-IDRY-21-005National Natural Science Foundation of China under Grant No.62002026。
文摘The inertial navigation system(INS),which is frequently used in emergency rescue operations and other situations,has the benefits of not relying on infrastructure,high positioning frequency,and strong real-time performance.However,the intricate and unpredictable pedestrian motion patterns lead the INS localization error to significantly diverge with time.This paper aims to enhance the accuracy of zero-velocity interval(ZVI)detection and reduce the heading and altitude drift of foot-mounted INS via deep learning and equation constraint of dual feet.Aiming at the observational noise problem of low-cost inertial sensors,we utilize a denoising autoencoder to automatically eliminate the inherent noise.Aiming at the problem that inaccurate detection of the ZVI detection results in obvious displacement error,we propose a sample-level ZVI detection algorithm based on the U-Net neural network,which effectively solves the problem of mislabeling caused by sliding windows.Aiming at the problem that Zero-Velocity Update(ZUPT)cannot suppress heading and altitude error,we propose a bipedal INS method based on the equation constraint and ellipsoid constraint,which uses foot-to-foot distance as a new observation to correct heading and altitude error.We conduct extensive and well-designed experiments to evaluate the performance of the proposed method.The experimental results indicate that the position error of our proposed method did not exceed 0.83% of the total traveled distance.
基金funded by National Key R&D Program of China((Nos.2022YFC3003403 and 2018YFC1505203)Key Research and Development Program of Tibet Autonomous Region(XZ202301ZY0039G)+1 种基金Natural Science Foundation of Hebei Province(No.F2021201031)Geological Survey Project of China Geological Survey(No.DD20221747)。
文摘Glacier disasters occur frequently in alpine regions around the world,but the current conventional geological disaster measurement technology cannot be directly used for glacier disaster measurement.Hence,in this study,a distributed multi-sensor measurement system for glacier deformation was established by integrating piezoelectric sensing,coded sensing,attitude sensing technology and wireless communication technology.The traditional Modbus protocol was optimized to solve the problem of data identification confusion of different acquisition nodes.Through indoor wireless transmission,adaptive performance analysis,error measurement experiment and landslide simulation experiment,the performance of the measurement system was analyzed and evaluated.Using unmanned aerial vehicle technology,the reliability and effectiveness of the measurement system were verified on the site of Galongla glacier in southeastern Tibet,China.The results show that the mean absolute percentage errors were only 1.13%and 2.09%for the displacement and temperature,respectively.The distributed glacier deformation real-time measurement system provides a new means for the assessment of the development process of glacier disasters and disaster prevention and mitigation.
基金This work described in this paper is supported by Foundation of Jilin Province Department of Science and Technology under Grant YDZJ202201ZYTS531。
文摘In the traditional fringe projection profilometry system,the projector and the camera light center are both spatially virtual points.The spatial position relationships specified in the model are not easy to obtain,leading to inaccurate system parameters and affectingmeasurement accuracy.This paper proposes a method for solving the system parameters of the fringe projection profilometry system,and the spatial position of the camera and projector can be adjusted in accordance with the obtained calibration parameters.The steps are as follows:First,in accordance with the conversion relationship of the coordinate system in the calibration process,the calculation formula of the vertical distance from the camera light center to the reference plane and the calculation formula of the distance between the projector and the camera light center are given respectively.Secondly,according to the projector calibration principle,the position of the projector light axis perpendicular to the reference plane is gained by comparing the parallel relationship between the reference plane coordinate system and the projector coordinate system’s Z-axis.Then,in order to fulfill the position restriction that the line between the projector light center and the camera light center must be parallel to the reference plane,the camera’s spatial location is adjusted so that the vertical distance between it and the reference plane tends to that between the projector light center and the reference plane.And finally,the three-dimensional(3D)reconstruction of the target object can be finished using the phase height model’s system parameters once the aforementioned position limitations are put into practice.Experimental results demonstrate that the method improves the measurement accuracy,and verifies that it is effective and available in 3D shape measurement.
文摘State departments of transportation’s (DOTs) decisions to invest resources to expand or implement intelligent transportation systems (ITS) programs or even retire existing infrastructure need to be based on performance evaluations. Nonetheless, an apparent gap exists between the need for ITS performance measurements and the actual implementation. The evidence available points to challenges in the ITS performance measurement processes. This paper evaluated the state of practice of performance measurement for ITS across the US and provided insights. A comprehensive literature review assessed the use of performance measures by DOTs for monitoring implemented ITS programs. Based on the gaps identified through the literature review, a nationwide qualitative survey was used to gather insights from key stakeholders on the subject matter and presented in this paper. From the data gathered, performance measurement of ITS is fairly integrated into ITS programs by DOTs, with most agencies considering the process beneficial. There, however, exist reasons that prevent agencies from measuring ITS performance to greater detail and quality. These include lack of data, fragmented or incomparable data formats, the complexity of the endeavor, lack of data scientists, and difficulty assigning responsibilities when inter-agency collaboration is required. Additionally, DOTs do not benchmark or compare their ITS performance with others for reasons that include lack of data, lack of guidance or best practices, and incomparable data formats. This paper is relevant as it provides insights expected to guide DOTs and other agencies in developing or reevaluating their ITS performance measurement processes.
基金supported by the project of Large Research Infrastructures"China initiative Accelerator-Driven System"(No.2017-000052-75-01-000590)"Studies of intelligent LLRF control algorithms for superconducting RF cavities"(No.E129851YR0)the National Natural Science Foundation of China(No.12205344).
文摘The accurate measurement of parameters such as the cavity-loaded quality factor(Q_(L))and half bandwidth(f_(0.5))is essential for monitoring the performance of superconducting radio-frequency cavities.However,the conventional"field decay method"employed to calibrate these values requires the cavity to satisfy a"zero-input"condition.This can be challenging when the source impedance is mismatched and produce nonzero forward signals(V_(f))that significantly affect the measurement accuracy.To address this limitation,we developed a modified version of the"field decay method"based on the cavity differential equation.The proposed approach enables the precise calibration of f_(0.5) even under mismatch conditions.We tested the proposed approach on the SRF cavities of the Chinese Accelerator-Driven System Front-End Demo Superconducting Linac and compared the results with those obtained from a network analyzer.The two sets of results were consistent,indicating the usefulness of the proposed approach.
文摘This research introduces a challenge in integrating and cleaning the data,which is a crucial task in object matching.While the object is detected and then measured,the vibration at different light intensities may influence the durability and reliability of mechanical systems or structures and cause problems such as damage,abnormal stopping,and disaster.Recent research failed to improve the accuracy rate and the computation time in tracking an object and in the vibration measurement.To solve all these problems,this proposed research simplifies the scaling factor determination by assigning a known real-world dimension to a predetermined portion of the image.A novel white color sticker of the known dimensions marked with a color dot is pasted on the surface of an object for the best result in the template matching using the Improved Up-Sampled Cross-Correlation(UCC)algorithm.The vibration measurement is calculated using the Finite-Difference Algorithm(FDA),a machine vision systemfitted with a macro lens sensor that is capable of capturing the image at a closer range,which does not affect the quality of displacement measurement from the video frames.Thefield test was conducted on the TAFE(Tractors and Farm Equipment Limited)tractor parts,and the percentage of error was recorded between 30%and 50%at very low vibration values close to zero,whereas it was recorded between 5%and 10%error in most high-accelerations,the essential range for vibration analysis.Finally,the suggested system is more suitable for measuring the vibration of stationary machinery having low frequency ranges.The use of a macro lens enables to capture of image frames at very close-ups.A 30%to 50%error percentage has been reported when the vibration amplitude is very small.Therefore,this study is not suitable for Nano vibration analysis.
基金supported by Nanyang Technological University,Singapore under the Wallenberg-NTU Presidential Postdoctoral Fellowship and the Natural Science Foundation in Heilongjiang Province,China(YQ2022F003).
文摘This article studies distributed pose(orientation and position)estimation of leader–follower multi-agent systems over𝜅-layer graphs in 2-D plane.Only the leaders have access to their orientations and positions,while the followers can measure the relative bearings or(angular and linear)velocities in their unknown local coordinate frames.For the orientation estimation,the local relative bearings are used to obtain the relative orientations among the agents,based on which a distributed orientation estimation algorithm is proposed for each follower to estimate its orientation.For the position estimation,the local relative bearings are used to obtain the position constraints among the agents,and a distributed position estimation algorithm is proposed for each follower to estimate its position by solving its position constraints.Both the orientation and position estimation errors converge to zero asymptotically.A simulation example is given to verify the theoretical results.
文摘This paper studies a strongly convergent inertial forward-backward-forward algorithm for the variational inequality problem in Hilbert spaces.In our convergence analysis,we do not assume the on-line rule of the inertial parameters and the iterates,which have been assumed by several authors whenever a strongly convergent algorithm with an inertial extrapolation step is proposed for a variational inequality problem.Consequently,our proof arguments are different from what is obtainable in the relevant literature.Finally,we give numerical tests to confirm the theoretical analysis and show that our proposed algorithm is superior to related ones in the literature.