The basic concept of fast Z-pinch,and late progress in fast Z-pinch plasma research as HEDP and ICF research,especially as an approach for high yield low-cost fusion energy research,are summarized in this paper.The po...The basic concept of fast Z-pinch,and late progress in fast Z-pinch plasma research as HEDP and ICF research,especially as an approach for high yield low-cost fusion energy research,are summarized in this paper.The possible technical challenges of fast Z-pinch-driven ICF as fusion energy and it application prospect are discussed.展开更多
Magnetized target fusion is an alternative method to fulfill the goal of controlled fusion, which combines advan- tages of both magnetic confinement fusion and inertial confinement fusion since its parameter space lie...Magnetized target fusion is an alternative method to fulfill the goal of controlled fusion, which combines advan- tages of both magnetic confinement fusion and inertial confinement fusion since its parameter space lies between the two traditional ways. Field reversed configuration (FFtC) is a good candidate of magnetized targets due to its translatable, compressible, high /3 and high energy density properties. Dynamic formation process of high density FFtC is observed on the YingGuang 1 device for the first time in China. The evolution of a magnetic field is detected with magnetic probes, and the compression process can be clearly seen from images taken with a high-speed multi-frame CCD camera. The process is also studied with two-dimensional magneto hydrodynamic code MPF-2D theoretically, and the results agree well with the experiment. Combining the experimental data and the theoretical analysis, the length of the formed FRC is about 39 cm, the diameter is about 2-2. 7cm, the average density is 1.3× 1016 cm-3, and the average temperature is 137eV.展开更多
The implosion plasma drive fusion pellet of inertial confinement is a concept related to nuclear fusion,a process in which atomic nuclei combine to form heavier nuclei,releasing a large amount of energy in the process...The implosion plasma drive fusion pellet of inertial confinement is a concept related to nuclear fusion,a process in which atomic nuclei combine to form heavier nuclei,releasing a large amount of energy in the process.The implosion plasma drive fusion pellet is a potential fuel source for achieving controlled nuclear fusion.ICF(inertial confinement fusion)is a technique used to achieve fusion by compressing a small target containing fusion fuel to extremely high densities and temperatures using lasers or other methods.The implosion plasma drive fusion pellet concept involves using a small pellet of deuterium and tritium(two isotopes of hydrogen)as fusion fuel,and then rapidly heating and compressing it using a pulsed power system.The implosion process creates a high-pressure plasma that ignites the fusion reactions,releasing energy in the form of neutrons and charged particles.The resulting energy can be captured and used for power generation.This technology is still in the experimental stage,and significant research and development is required to make it commercially viable.However,it has the potential to provide a virtually limitless source of clean energy with no greenhouse gas emissions or long-term radioactive waste.Be that as it may,ICF has to get exact control of the implosion process,mitigate insecurities,and create modern materials and advances to resist the extraordinary conditions of the combined response.展开更多
A mixture of deuterium (D) and tritium (T) is the most likely fuel for laser-driven inertial confinement fusion (ICF) reactors and hence DD and DT are the fusion reactions that will fire these reactors in the future. ...A mixture of deuterium (D) and tritium (T) is the most likely fuel for laser-driven inertial confinement fusion (ICF) reactors and hence DD and DT are the fusion reactions that will fire these reactors in the future. Neutrons produced from the two reactions will escape from the burning plasma, in the reactor core, and they are the only products possible to be measured directly. DT/DD neutron ratio is crucial for evaluation of T/D fuel ratio, burn control, tritium cycle and alpha particle self-heating power. To measure this ratio experimentally, the neutron spectra of DD and DT reactions have to be measured separately and simultaneously under high neutron counting with sufficient statistics (typically within 10% error) in a very short time and these issues are mutually contradicted. That is why it is not plausible to measure this high priority ratio for reactor performance accurately. Precise calculations of the DT/DD neutron ratio are needed. Here, we introduce such calculations using a three dimensional (3-D) Monte Carlo code at energies up to 40 MeV (the predicted maximum ion acceleration energy with the available laser systems). In addition, the fusion power ratio of DD and DT reactions is calculated for the same energy range. The study indicates that for a mixture of 50% deuterium and 50% triton, with taking into account the reactions D(d,n)<sup>3</sup>He and T(d,n)<sup>4</sup>He, the optimum energy value for achieving the most efficient laser-driven ICF is 0.08 MeV.展开更多
Inertial fusion energy (IFE) has been considered a promising, nearly inexhaustible source of sustainable carbon-free power for the world's energy future. It has long been recognized that the control of hydrodynamic...Inertial fusion energy (IFE) has been considered a promising, nearly inexhaustible source of sustainable carbon-free power for the world's energy future. It has long been recognized that the control of hydrodynamic instabilities is of critical importance for ignition and high-gain in the inertial-confinement fusion (ICF) hot-spot ignition scheme. In this mini-review, we summarize the progress of theoretical and simulation research of hydrodynamic instabilities in the ICF central hot-spot implosion in our group over the past decade. In order to obtain sufficient understanding of the growth of hydrodynamic instabilities in ICF, we first decompose the problem into different stages according to the implosion physics processes. The decomposed essential physics pro- cesses that are associated with ICF implosions, such as Rayleigh-Taylor instability (RTI), Richtmyer-Meshkov instability (RMI), Kelvin-Helmholtz instability (KHI), convergent geometry effects, as well as perturbation feed-through are reviewed. Analyti- cal models in planar, cylindrical, and spherical geometries have been established to study different physical aspects, including density-gradient, interface-coupling, geometry, and convergent effects. The influence of ablation in the presence of preheating on the RTI has been extensively studied by numerical simulations. The KHI considering the ablation effect has been discussed in detail for the first time. A series of single-mode ablative RTI experiments has been performed on the Shenguang-II laser facility. The theoretical and simulation research provides us the physical insights of linear and weakly nonlinear growths, and nonlinear evolutions of the hydrodynamic instabilities in ICF implosions, which has directly supported the research of ICF ignition target design. The ICF hot-spot ignition implosion design that uses several controlling features, based on our current understanding of hydrodynamic instabilities, to address shell implosion stability, has been briefly described, several of which are novel.展开更多
基金National Natural Science Foundation Project(10375010)
文摘The basic concept of fast Z-pinch,and late progress in fast Z-pinch plasma research as HEDP and ICF research,especially as an approach for high yield low-cost fusion energy research,are summarized in this paper.The possible technical challenges of fast Z-pinch-driven ICF as fusion energy and it application prospect are discussed.
基金Supported by the Development Foundation of China Academy of Engineering Physics under Grant No 2011B0402009the National Natural Science Foundation of China under Grant Nos 11375163,11575029 and 11175028
文摘Magnetized target fusion is an alternative method to fulfill the goal of controlled fusion, which combines advan- tages of both magnetic confinement fusion and inertial confinement fusion since its parameter space lies between the two traditional ways. Field reversed configuration (FFtC) is a good candidate of magnetized targets due to its translatable, compressible, high /3 and high energy density properties. Dynamic formation process of high density FFtC is observed on the YingGuang 1 device for the first time in China. The evolution of a magnetic field is detected with magnetic probes, and the compression process can be clearly seen from images taken with a high-speed multi-frame CCD camera. The process is also studied with two-dimensional magneto hydrodynamic code MPF-2D theoretically, and the results agree well with the experiment. Combining the experimental data and the theoretical analysis, the length of the formed FRC is about 39 cm, the diameter is about 2-2. 7cm, the average density is 1.3× 1016 cm-3, and the average temperature is 137eV.
文摘The implosion plasma drive fusion pellet of inertial confinement is a concept related to nuclear fusion,a process in which atomic nuclei combine to form heavier nuclei,releasing a large amount of energy in the process.The implosion plasma drive fusion pellet is a potential fuel source for achieving controlled nuclear fusion.ICF(inertial confinement fusion)is a technique used to achieve fusion by compressing a small target containing fusion fuel to extremely high densities and temperatures using lasers or other methods.The implosion plasma drive fusion pellet concept involves using a small pellet of deuterium and tritium(two isotopes of hydrogen)as fusion fuel,and then rapidly heating and compressing it using a pulsed power system.The implosion process creates a high-pressure plasma that ignites the fusion reactions,releasing energy in the form of neutrons and charged particles.The resulting energy can be captured and used for power generation.This technology is still in the experimental stage,and significant research and development is required to make it commercially viable.However,it has the potential to provide a virtually limitless source of clean energy with no greenhouse gas emissions or long-term radioactive waste.Be that as it may,ICF has to get exact control of the implosion process,mitigate insecurities,and create modern materials and advances to resist the extraordinary conditions of the combined response.
文摘A mixture of deuterium (D) and tritium (T) is the most likely fuel for laser-driven inertial confinement fusion (ICF) reactors and hence DD and DT are the fusion reactions that will fire these reactors in the future. Neutrons produced from the two reactions will escape from the burning plasma, in the reactor core, and they are the only products possible to be measured directly. DT/DD neutron ratio is crucial for evaluation of T/D fuel ratio, burn control, tritium cycle and alpha particle self-heating power. To measure this ratio experimentally, the neutron spectra of DD and DT reactions have to be measured separately and simultaneously under high neutron counting with sufficient statistics (typically within 10% error) in a very short time and these issues are mutually contradicted. That is why it is not plausible to measure this high priority ratio for reactor performance accurately. Precise calculations of the DT/DD neutron ratio are needed. Here, we introduce such calculations using a three dimensional (3-D) Monte Carlo code at energies up to 40 MeV (the predicted maximum ion acceleration energy with the available laser systems). In addition, the fusion power ratio of DD and DT reactions is calculated for the same energy range. The study indicates that for a mixture of 50% deuterium and 50% triton, with taking into account the reactions D(d,n)<sup>3</sup>He and T(d,n)<sup>4</sup>He, the optimum energy value for achieving the most efficient laser-driven ICF is 0.08 MeV.
基金supported by the National Natural Science Foundation of China(Grant Nos.11275031,11675026,11475032,11475034,11575033,and 11274026)the Foundation of President of Chinese Academy of Engineering Physics(Grant No.2014-1-040)the National Basic Research Program of China(Grant No.2013CB834100)
文摘Inertial fusion energy (IFE) has been considered a promising, nearly inexhaustible source of sustainable carbon-free power for the world's energy future. It has long been recognized that the control of hydrodynamic instabilities is of critical importance for ignition and high-gain in the inertial-confinement fusion (ICF) hot-spot ignition scheme. In this mini-review, we summarize the progress of theoretical and simulation research of hydrodynamic instabilities in the ICF central hot-spot implosion in our group over the past decade. In order to obtain sufficient understanding of the growth of hydrodynamic instabilities in ICF, we first decompose the problem into different stages according to the implosion physics processes. The decomposed essential physics pro- cesses that are associated with ICF implosions, such as Rayleigh-Taylor instability (RTI), Richtmyer-Meshkov instability (RMI), Kelvin-Helmholtz instability (KHI), convergent geometry effects, as well as perturbation feed-through are reviewed. Analyti- cal models in planar, cylindrical, and spherical geometries have been established to study different physical aspects, including density-gradient, interface-coupling, geometry, and convergent effects. The influence of ablation in the presence of preheating on the RTI has been extensively studied by numerical simulations. The KHI considering the ablation effect has been discussed in detail for the first time. A series of single-mode ablative RTI experiments has been performed on the Shenguang-II laser facility. The theoretical and simulation research provides us the physical insights of linear and weakly nonlinear growths, and nonlinear evolutions of the hydrodynamic instabilities in ICF implosions, which has directly supported the research of ICF ignition target design. The ICF hot-spot ignition implosion design that uses several controlling features, based on our current understanding of hydrodynamic instabilities, to address shell implosion stability, has been briefly described, several of which are novel.