期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
基于自适应全变差的乘性噪声去噪算法 被引量:3
1
作者 任少美 张化朋 《南京邮电大学学报(自然科学版)》 北大核心 2016年第3期74-78,共5页
针对现有去除乘性噪声的变分模型存在细节丢失和计算速度慢的问题,文中引入权重函数,在此基础上给出一种基于偏微分方程(PDE)的去除图像乘性噪声的变分模型。为了提高运算速度,在该模型中引入不精确的交替方向乘子算法(IADMM)。在算法中... 针对现有去除乘性噪声的变分模型存在细节丢失和计算速度慢的问题,文中引入权重函数,在此基础上给出一种基于偏微分方程(PDE)的去除图像乘性噪声的变分模型。为了提高运算速度,在该模型中引入不精确的交替方向乘子算法(IADMM)。在算法中,引入辅助变量将原问题变为3个相关的子问题,然后分别对3个子问题求解。实验结果表明,模型有较好的去噪效果,能够较好地抑制图像中的"阶梯效应"。与梯度下降法相比,该算法处理过程快,极大地缩短了运算时间,并且保持了较好的去噪效果。 展开更多
关键词 图像去噪 伽马噪声 偏微分方程 不精确的ADMM(iadmm)算法
下载PDF
Approximate Customized Proximal Point Algorithms for Separable Convex Optimization
2
作者 Hong-Mei Chen Xing-Ju Cai Ling-Ling Xu 《Journal of the Operations Research Society of China》 EI CSCD 2023年第2期383-408,共26页
Proximal point algorithm(PPA)is a useful algorithm framework and has good convergence properties.Themain difficulty is that the subproblems usually only have iterative solutions.In this paper,we propose an inexact cus... Proximal point algorithm(PPA)is a useful algorithm framework and has good convergence properties.Themain difficulty is that the subproblems usually only have iterative solutions.In this paper,we propose an inexact customized PPA framework for twoblock separable convex optimization problem with linear constraint.We design two types of inexact error criteria for the subproblems.The first one is absolutely summable error criterion,under which both subproblems can be solved inexactly.When one of the two subproblems is easily solved,we propose another novel error criterion which is easier to implement,namely relative error criterion.The relative error criterion only involves one parameter,which is more implementable.We establish the global convergence and sub-linear convergence rate in ergodic sense for the proposed algorithms.The numerical experiments on LASSO regression problems and total variation-based image denoising problem illustrate that our new algorithms outperform the corresponding exact algorithms. 展开更多
关键词 inexact criteria Proximal point algorithm alternating direction method of multipliers Separable convex programming
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部