The formal series symmetry approach (FSSA), a quite powerful and straightforward method to establish infinitely many generalized symmetries of classical integrable systems, has been successfully extended in the supe...The formal series symmetry approach (FSSA), a quite powerful and straightforward method to establish infinitely many generalized symmetries of classical integrable systems, has been successfully extended in the supersymmetric framework to explore series of infinitely many generalized symmetries for supersymmetric systems. Taking the N = 1 supersymmetric Boiti-Leon-Manna-Pempinelli system as a concrete example, it is shown that the application of the extended FSSA to this supersymmetric system leads to a set of infinitely f(t). Some interesting special cases of symmetry algebras are commutativity of higher order generalized symmetries. many generalized symmetries with an arbitrary function presented, including a limit case f(t) = 1 related to the展开更多
基金supported by the National Natural Science Foundation of China(Grant Nos.11275123,11175092,11475052,and 11435005)the Shanghai Knowledge Service Platform for Trustworthy Internet of Things,China(Grant No.ZF1213)the Talent Fund and K C Wong Magna Fund in Ningbo University,China
文摘The formal series symmetry approach (FSSA), a quite powerful and straightforward method to establish infinitely many generalized symmetries of classical integrable systems, has been successfully extended in the supersymmetric framework to explore series of infinitely many generalized symmetries for supersymmetric systems. Taking the N = 1 supersymmetric Boiti-Leon-Manna-Pempinelli system as a concrete example, it is shown that the application of the extended FSSA to this supersymmetric system leads to a set of infinitely f(t). Some interesting special cases of symmetry algebras are commutativity of higher order generalized symmetries. many generalized symmetries with an arbitrary function presented, including a limit case f(t) = 1 related to the