期刊文献+
共找到20篇文章
< 1 >
每页显示 20 50 100
Infinitely Many Solutions and a Ground-State Solution for Klein-Gordon Equation Coupled with Born-Infeld Theory
1
作者 Fangfang Huang Qiongfen Zhang 《Journal of Applied Mathematics and Physics》 2024年第4期1441-1458,共18页
In this paper, we intend to consider a kind of nonlinear Klein-Gordon equation coupled with Born-Infeld theory. By using critical point theory and the method of Nehari manifold, we obtain two existing results of infin... In this paper, we intend to consider a kind of nonlinear Klein-Gordon equation coupled with Born-Infeld theory. By using critical point theory and the method of Nehari manifold, we obtain two existing results of infinitely many high-energy radial solutions and a ground-state solution for this kind of system, which improve and generalize some related results in the literature. 展开更多
关键词 Klein-Gordon Equation Born-Infeld Theory infinitely Many solutions Ground-State Solution Critical Point Theory
下载PDF
Infinitely many periodic solutions for second-order Hamiltonian systems
2
作者 尹翠翠 张福保 黄成山 《Journal of Southeast University(English Edition)》 EI CAS 2009年第4期549-551,共3页
The existence of high energy periodic solutions for the second-order Hamiltonian system -ü(t)+A(t)u(t)=▽F(t,u(t)) with convex and concave nonlinearities is studied, where F(t, u) = F1(t,u)+F2(t,... The existence of high energy periodic solutions for the second-order Hamiltonian system -ü(t)+A(t)u(t)=▽F(t,u(t)) with convex and concave nonlinearities is studied, where F(t, u) = F1(t,u)+F2(t,u). Under the condition that F is an even functional, infinitely many solutions for it are obtained by the variant fountain theorem. The result is a complement for some known ones in the critical point theory. 展开更多
关键词 variant fountain theorem second-order Hamiltonian system infinitely periodic solutions even functional
下载PDF
Constructing infinite sequence exact solutions of nonlinear evolution equations 被引量:3
3
作者 套格图桑 那仁满都拉 《Chinese Physics B》 SCIE EI CAS CSCD 2011年第11期23-33,共11页
To construct the infinite sequence new exact solutions of nonlinear evolution equations and study the first kind of elliptic function, new solutions and the corresponding B^cklund transformation of the equation are pr... To construct the infinite sequence new exact solutions of nonlinear evolution equations and study the first kind of elliptic function, new solutions and the corresponding B^cklund transformation of the equation are presented. Based on this, the generalized pentavalent KdV equation and the breaking soliton equation are chosen as applicable examples and infinite sequence smooth soliton solutions, infinite sequence peak solitary wave solutions and infinite sequence compact soliton solutions are obtained with the help of symbolic computation system Mathematica. The method is of significance to search for infinite sequence new exact solutions to other nonlinear evolution equations. 展开更多
关键词 first kind of elliptic function Backlund transformation nonlinear evolution equation new infinite sequence exact solutions
下载PDF
INFINITELY MANY SOLUTIONS FOR AN ELLIPTIC PROBLEM INVOLVING CRITICAL NONLINEARITY 被引量:2
4
作者 曹道民 严树森 《Acta Mathematica Scientia》 SCIE CSCD 2010年第6期2017-2032,共16页
We study the following elliptic problem:{-div(a(x)Du)=Q(x)|u|2-2u+λu x∈Ω,u=0 onδΩ Under certain assumptions on a and Q, we obtain existence of infinitely many solutions by variational method.
关键词 semilinear elliptic equations infinitely many solutions variational method
下载PDF
POSITIVE SOLUTIONS AND INFINITELY MANY SOLUTIONS FOR A WEAKLY COUPLED SYSTEM 被引量:1
5
作者 Xueliang DUAN Gongming WEI Haitao YANG 《Acta Mathematica Scientia》 SCIE CSCD 2020年第5期1585-1601,共17页
We study a Schrodinger system with the sum of linear and nonlinear couplings.Applying index theory,we obtain infinitely many solutions for the system with periodic potent ials.Moreover,by using the concentration compa... We study a Schrodinger system with the sum of linear and nonlinear couplings.Applying index theory,we obtain infinitely many solutions for the system with periodic potent ials.Moreover,by using the concentration compactness met hod,we prove the exis tence and nonexistence of ground state solutions for the system with close-to-periodic potentials. 展开更多
关键词 coupled Schrodinger system ground state solution infinitely many solutions concentration compactness principle
下载PDF
INFINITELY MANY SOLUTIONS FOR A NONLINEAR ELLIPTIC EQUATION INVOLVING CRITICAL SOBOLEV EXPONENT 被引量:1
6
作者 陈文雄 《Acta Mathematica Scientia》 SCIE CSCD 1991年第2期128-135,共8页
In this paper, it is proved that the following boundary value problem [GRAPHICS] admits infinitely many solution for 0 < lambda < lambda-1, n greater-than-or-equal-to 5 and for ball regions OMEGA = B(R)(0).
关键词 infiniteLY MANY solutions FOR A NONLINEAR ELLIPTIC EQUATION INVOLVING CRITICAL SOBOLEV EXPONENT
下载PDF
TWO DISJOINT AND INFINITE SETS OF SOLUTIONS FOR AN ELLIPTIC EQUATION INVOLVING CRITICAL HARDY-SOBOLEV EXPONENTS
7
作者 Khalid BOUABID Rachid ECHARGHAOUI Mohssine EL MANSOUR 《Acta Mathematica Scientia》 SCIE CSCD 2023年第5期2061-2074,共14页
In this paper,by an approximating argument,we obtain two disjoint and infinite sets of solutions for the following elliptic equation with critical Hardy-Sobolev exponents■whereΩis a smooth bounded domain in RN with ... In this paper,by an approximating argument,we obtain two disjoint and infinite sets of solutions for the following elliptic equation with critical Hardy-Sobolev exponents■whereΩis a smooth bounded domain in RN with 0∈?Ωand all the principle curvatures of?Ωat 0 are negative,a∈C1(Ω,R*+),μ>0,0<s<2,1<q<2 and N>2(q+1)/(q-1).By2*:=2N/(N-2)and 2*(s):(2(N-s))/(N-2)we denote the critical Sobolev exponent and Hardy-Sobolev exponent,respectively. 展开更多
关键词 Laplacien critical Sobolev-Hardy exponent critical Sobolev exponent infinitely many solutions Pohozaev identity
下载PDF
EXISTENCE OF INFINITELY MANY SOLUTIONS FOR ELLIPTIC PROBLEMS WITH CRITICAL EXPONENT
8
作者 傅红卓 沈尧天 《Acta Mathematica Scientia》 SCIE CSCD 2004年第3期395-402,共8页
This paper is concerned with the following nonlinear Dirichlet problem:where △pu = div(| ▽u|p- 2 ▽u) is the p-Laplacian of u, Ω is a bounded domain in Rn (n > 3), 1 < p < n, p = -pn/n-p is the critical ex... This paper is concerned with the following nonlinear Dirichlet problem:where △pu = div(| ▽u|p- 2 ▽u) is the p-Laplacian of u, Ω is a bounded domain in Rn (n > 3), 1 < p < n, p = -pn/n-p is the critical exponent for the Sobolev imbedding, λ > 0 and f(x, u) satisfies some conditions. It reaches the conclusion that this problem has infinitely many solutions. Some results as p = 2 or f(x,u) = |u|q-2u, where 1 < q < p, are generalized. 展开更多
关键词 critical Sobolev exponent concentration compactness principle GENUS infinitely many solutions
下载PDF
Existence of Infinitely Many High Energy Solutions for a Fourth-Order Kirchhoff Type Elliptic Equation in R<sup>3</sup>
9
作者 Ting Xiao Canlin Gan Qiongfen Zhang 《Journal of Applied Mathematics and Physics》 2020年第8期1550-1559,共10页
In this paper, we consider the following fourth-order equation of Kirchhoff type<br /> <p> <img src="Edit_bcc9844d-7cbc-494d-90c4-d75364de5658.bmp" alt="" /> </p> <p> ... In this paper, we consider the following fourth-order equation of Kirchhoff type<br /> <p> <img src="Edit_bcc9844d-7cbc-494d-90c4-d75364de5658.bmp" alt="" /> </p> <p> where <i>a</i>, <i>b</i> > 0 are constants, 3 < <i>p</i> < 5, <i>V</i> ∈ <i>C</i> (R<sup>3</sup>, R);Δ<sup>2</sup>: = Δ (Δ) is the biharmonic operator. By using Symmetric Mountain Pass Theorem and variational methods, we prove that the above equation admits infinitely many high energy solutions under some sufficient assumptions on <i>V</i> (<i>x</i>). We make some assumptions on the potential <i>V</i> (<i>x</i>) to solve the difficulty of lack of compactness of the Sobolev embedding. Our results improve some related results in the literature. </p> 展开更多
关键词 Fourth-Order Kirchhoff Type Elliptic Equation infinitely Many solutions Symmetric Mountain Pass Theorem Variational Methods
下载PDF
The New Infinite Sequence Solutions of Multiple Sine-Gordon Equations
10
作者 Yu Mei Bai Taogetusang 《Journal of Applied Mathematics and Physics》 2016年第4期796-805,共10页
By the function transformation and the first integral of the ordinary differential equations, the problem of solving the solutions of the double sine-Gordon equation and the treble sine-Gordon equation is researched, ... By the function transformation and the first integral of the ordinary differential equations, the problem of solving the solutions of the double sine-Gordon equation and the treble sine-Gordon equation is researched, and the new solutions are obtained. First, the problem of solving the solutions of the double sine-Gordon equation and the treble sine-Gordon equation is changed to the problem of solving the solutions of the nonlinear ordinary differential equation. Second, with the help of the B?cklund transformation and the nonlinear superposition formula of solutions of the first kind of elliptic equation and the Riccati equation, the new infinite sequence soliton-like solutions of two kinds of sine-Gordon equations are constructed. 展开更多
关键词 First Integral Multiple Sine-Gordon Equation Bäcklund Transformation New infinite Sequence Soliton-Like solutions
下载PDF
THE EXISTENCE OF SOLUTIONS OF QUASILINEAR ELLIPTIC EQUATIONS WITH CHANGE OF SIGN
11
作者 李工宝 余纯 《Acta Mathematica Scientia》 SCIE CSCD 2001年第4期469-482,共14页
This paper considers the following quasilinear elliptic problem [GRAPHICS] where Omega is a bounded regular domain in R-N (N greater than or equal to 3), N > p > 1. When g(u) satisfies suitable conditions and g(... This paper considers the following quasilinear elliptic problem [GRAPHICS] where Omega is a bounded regular domain in R-N (N greater than or equal to 3), N > p > 1. When g(u) satisfies suitable conditions and g(u)u - beta integral (u)(0) g(s)ds is unbounded, a(x) is a Holder continuous function which changes sign on Omega and integral (Omega-) \a(x)\ dx is suitably small. The authors prove the existence of a nonnegative nontrivial solution for N > p > 1. in particular, the existence of a positive solution to the problem for N > p greater than or equal to 2. Our main theorem generalizes a recent result of Samia Khanfir and Leila Lassoued (see [1]) concerning the case where p = 2. They prove also that if g(u) = \u \ (q-2)u with p < q < p* and Omega (+) = {x is an element ofQ \a(x) > 0} is a nonempty open set, then the above problem possesses infinitely many solutions. 展开更多
关键词 qasilinear elliptic equation (PS) condition mountain-pass Lemma infinite solution
下载PDF
ANALYTICAL SOLUTION OF FLOW IN INFINITE STRATIFIED OIL RESERVOIR AND ITS APPLICATION
12
作者 戴榕菁 孔祥言 钟钊新 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 1989年第9期867-875,共9页
This paper presents an analytical solution for the production function and pressure distribution function of flow in infinite stratified oil reservoir with crosflow under the condition of constant wellbore pressure (C... This paper presents an analytical solution for the production function and pressure distribution function of flow in infinite stratified oil reservoir with crosflow under the condition of constant wellbore pressure (CWP condition) by Weber's integral transformation. The calculation results are shown in the form of curves and these results can be used to analyse unsteady flow test of production with CWP condition. 展开更多
关键词 CWP ANALYTICAL SOLUTION OF FLOW IN infinite STRATIFIED OIL RESERVOIR AND ITS APPLICATION exp
下载PDF
THE SINGULAR SECOND ORDER NONLINEAR EIGENVALUE PROBLEM WITH INFINITELY MANY POSITIVE SOLUTIONS 被引量:6
13
作者 姚庆六 《Annals of Differential Equations》 2001年第3期268-274,共7页
In this paper we consider the existence of infinitely many positive solutions for second order nonlinear eigenvalue problem with singular coefficient function. By the use of Krasnosel'skii fixed point theorem of c... In this paper we consider the existence of infinitely many positive solutions for second order nonlinear eigenvalue problem with singular coefficient function. By the use of Krasnosel'skii fixed point theorem of cone expansion-compression type we give several sufficient conditions. 展开更多
关键词 second order nonlinear eigenvalue problem infinitely many po-sitive solutions singular coefficient Krasnosel'skii fixed point theorem
原文传递
FOUNTAIN THEOREM OVER CONES AND APPLICATIONS
14
作者 严树森 杨健夫 《Acta Mathematica Scientia》 SCIE CSCD 2010年第6期1881-1888,共8页
In this paper, we establish fountain theorems over cones and apply it to the quasilinear elliptic problem{-△Pu=λ|u|q-2u+μ|u| y-2u,x∈Ω,u=0,x∈δΩ to show that problem (1) possesses infinitely many solution... In this paper, we establish fountain theorems over cones and apply it to the quasilinear elliptic problem{-△Pu=λ|u|q-2u+μ|u| y-2u,x∈Ω,u=0,x∈δΩ to show that problem (1) possesses infinitely many solutions, where 1 〈 p 〈 N, 1 〈 q 〈 P 〈 γ, Ω∩→ R^N is a smooth bounded domain and λ, μ∈ R. 展开更多
关键词 fountain theorem over cones infinitely many solutions quasilinear elliptic problem
下载PDF
Infinitely Many Solutions for the Fractional Nonlinear Schrodinger Equations ofa New Type
15
作者 GUO Qing DUAN Lixiu 《Journal of Partial Differential Equations》 CSCD 2022年第3期259-280,共22页
This paper,we study the multiplicity of solutions for the fractional Schrodingerequation(-△)^(s)u+V(x)u=u^(p),u>0,x∈R^(N),u∈H^(s)(R^(N)),with s∈(0,1),N≥3,p∈(1,2N/N-2s-1)and lim_(|y|→+∞)V(y)>0.By assuming... This paper,we study the multiplicity of solutions for the fractional Schrodingerequation(-△)^(s)u+V(x)u=u^(p),u>0,x∈R^(N),u∈H^(s)(R^(N)),with s∈(0,1),N≥3,p∈(1,2N/N-2s-1)and lim_(|y|→+∞)V(y)>0.By assuming suitable decay property of the radial potential V(y)=V(|y|),we construct another type of solutions concentrating at infinite vertices of two similar equilateral polygonal with infinitely large length of sides.Hence,besides the length of each polygonal,we must consider one more parameter,that is the height of the podetium,simultaneously.Another difficulty lies in the non-local property of the operator(-△)^(s) and the algebraic decay involving the approximation solutions make the estimates become more subtle. 展开更多
关键词 Fractional Schrodinger equations infinitely many solutions reduction method
原文传递
Infinitely Many Solutions for an Elliptic Problem with Critical Exponent in Exterior Domain
16
作者 WANG Liping 《Journal of Partial Differential Equations》 2010年第1期80-104,共25页
We consider the following nonlinear problem {-△u=uN+2/N-2,u〉0 in R^N/Ω,u(x)→0 as|x|→+∞,δu/δn=0 on δΩ,where Ω belong to RN,N ≥ 4 is a smooth and bounded domain and n denotes inward normal vector of ... We consider the following nonlinear problem {-△u=uN+2/N-2,u〉0 in R^N/Ω,u(x)→0 as|x|→+∞,δu/δn=0 on δΩ,where Ω belong to RN,N ≥ 4 is a smooth and bounded domain and n denotes inward normal vector of δΩ. We prove that the above problem has infinitely many solutions whose energy can be made arbitrarily large when Ω is convex seen from inside (with some symmetries). 展开更多
关键词 infinitely many solutions critical exponent exterior domain.
原文传递
ON PERIODIC SOLUTIONS OF FUNCTIONAL DIFFERENTIAL EQUATIONS WITH INFINITE DELAY
17
作者 赵晓强 《Acta Mathematicae Applicatae Sinica》 SCIE CSCD 1993年第4期328-334,共7页
In this paper,using Mawhin's continuation theorem in the theory of coincidence degree,we first prove the general existence theorem of periodic solutions for F.D.Es with infinite delay:dx(t)/dt=f(t,x_t),x(t)∈R^n,w... In this paper,using Mawhin's continuation theorem in the theory of coincidence degree,we first prove the general existence theorem of periodic solutions for F.D.Es with infinite delay:dx(t)/dt=f(t,x_t),x(t)∈R^n,which is an extension of Mawhin's existence theorem of periodic solutions of F.D.Es with finite delay.Second,as an application of it,we obtain the existence theorem of positive periodic solutions of the Lotka-Volterra equations:dx(t)/dt=x(t)(a-kx(t)-by(t)),dy(t)/dt=-cy(t)+d integral from n=0 to +∞ x(t-s)y(t-s)dμ(s)+p(t). 展开更多
关键词 AS ON PERIODIC solutions OF FUNCTIONAL DIFFERENTIAL EQUATIONS WITH infinite DELAY
原文传递
Divergent Solutions to the L^2-Supercritical NLS Equations Qing GUO
18
作者 Qing GUO 《Acta Mathematicae Applicatae Sinica》 SCIE CSCD 2016年第1期137-162,共26页
We investigate the nonlinear Schrdinger equation iut+△u+|u|^p-1u = 0 with 1+4/N 〈 p 〈 1+4/(N-2)(when N = 1,2,1 +4/N 〈 p 〈 ∞) in energy space H^1 and study the divergent property of infinite-variance a... We investigate the nonlinear Schrdinger equation iut+△u+|u|^p-1u = 0 with 1+4/N 〈 p 〈 1+4/(N-2)(when N = 1,2,1 +4/N 〈 p 〈 ∞) in energy space H^1 and study the divergent property of infinite-variance and nonradial solutions.If M(u)^(1-sc)/sc E(u) 〈 M(Q)^(1-sc)/scE(Q) and ||u0||0^(1-sc)/sc ||▽u0||2 〉 ||Q||^(1-sc)/sc |▽Q||2,then either u(t) blows up in finite forward time or u(t) exists globally for positive time and there exists a time sequence tn→ +∞ such that || ▽u(tn)||2 →+∞.Here Q is the ground state solution of —(1 — sc)Q + △Q + |Q|p-1Q = 0.A similar result holds for negative time.This extend the result of the 3D cubic Schrodinger equation obtained by Holmer to the general mass-supercritical and energy-subcritical case. 展开更多
关键词 nonlinear Schrdinger equation blow-up solution infinite variance mass-supercritical energy-subcritical
原文传递
On the Prescribed Boundary Mean Curvature Problem via Local Pohozaev Identities
19
作者 Qiu Xiang BIAN Jing CHEN Jing YANG 《Acta Mathematica Sinica,English Series》 SCIE CSCD 2023年第10期1951-1979,共29页
This paper deals with the following prescribed boundary mean curvature problem in B^(N){−Δu=0,u>0,∂_(u)∂_(ν)+N−2/2 u=N−2/2 K˜(y)u^(2−1),y∈B^(N)y∈S^(N−1),where K˜(y)=K˜(|y|,y˜)is a bounded nonnegative function w... This paper deals with the following prescribed boundary mean curvature problem in B^(N){−Δu=0,u>0,∂_(u)∂_(ν)+N−2/2 u=N−2/2 K˜(y)u^(2−1),y∈B^(N)y∈S^(N−1),where K˜(y)=K˜(|y|,y˜)is a bounded nonnegative function with y=(y,y˜)∈R^(2)×R^(N−3),2=2(N−1)/N−2.Combining the finite-dimensional reduction method and local Pohozaev type of identities,we prove that if N≥5 and K˜(r,y˜)has a stable critical point(r_(0),y˜_(0))with r0>0 and K˜(r0,y˜0)>0,then the above problem has infinitely many solutions,whose energy can be made arbitrarily large.Here our result fill the gap that the above critical points may include the saddle points of K˜(r,y˜). 展开更多
关键词 infinitely many solutions prescribed boundary mean curvature finite reduction local Pohozaev identities
原文传递
EXISTENCE AND MULTIPLICITY RESULTS FOR ELLIPTIC EQUATIONS WITH CRITICAL SOBOLEV EXPONENT AND HARDY TERM
20
作者 Shang Yanying Tang Chunlei 《Journal of Partial Differential Equations》 2007年第4期289-298,共10页
This paper concerns the existence and multiplicity of solutions for some semilinear elliptic equations with critical Sobolev exponent, Hardy term and the sublinear nonlinearity at origin. By using Ekeland,s variationa... This paper concerns the existence and multiplicity of solutions for some semilinear elliptic equations with critical Sobolev exponent, Hardy term and the sublinear nonlinearity at origin. By using Ekeland,s variational principle, we conclude the existence of nontrivial solution for this problem, the Clark's critical point theorem is used to prove the existence of infinitely many solutions for this problem with odd nonlinearity. 展开更多
关键词 Critical Sobolev exponent Brezis-Lieb lemma GENUS Hardy term infinitely many solutions nontrivial solution.
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部