In this paper,we consider infinite sums of the reciprocals of the Fibonacci numbers.Then applying the floor function to the reciprocals of this sums,we obtain a new identity involving the Fibonacci numbers.
In this paper, we study the sequential convergence in E-direct sums E(X) where X is an Ω-ofamily of Banach spaces and discuss the lifting of the Kadec-Klee property from X to E(X).
After posing the axiom of linear algebra, the author develops how this allows the calculation of arbitrary base powers, which provides an instantaneous calculation of powers in a particular base such as base ten;first...After posing the axiom of linear algebra, the author develops how this allows the calculation of arbitrary base powers, which provides an instantaneous calculation of powers in a particular base such as base ten;first of all by developing the any base calculation of these powers, then by calculating triangles following the example of the “arithmetical” triangle of Pascal and showing how the formula of the binomial of Newton is driving the construction. The author also develops the consequences of the axiom of linear algebra for the decimal writing of numbers and the result that this provides for the calculation of infinite sums of the inverse of integers to successive powers. Then the implications of these new forms of calculation on calculator technologies, with in particular the storage of triangles which calculate powers in any base and the use of a multiplication table in a very large canonical base are discussed.展开更多
In this article we shall examine several different types of figurative numbers which have been studied extensively over the period of 2500 years, and currently scattered on hundreds of websites. We shall discuss their...In this article we shall examine several different types of figurative numbers which have been studied extensively over the period of 2500 years, and currently scattered on hundreds of websites. We shall discuss their computation through simple recurrence relations, patterns and properties, and mutual relationships which have led to curious results in the field of elementary number theory. Further, for each type of figurative numbers we shall show that the addition of first finite numbers and infinite addition of their inverses often require new/strange techniques. We sincerely hope that besides experts, students and teachers of mathematics will also be benefited with this article.展开更多
基金Supported by the National Natural Science Foundation of China (Grant No.11071194)
文摘In this paper,we consider infinite sums of the reciprocals of the Fibonacci numbers.Then applying the floor function to the reciprocals of this sums,we obtain a new identity involving the Fibonacci numbers.
文摘In this paper, we study the sequential convergence in E-direct sums E(X) where X is an Ω-ofamily of Banach spaces and discuss the lifting of the Kadec-Klee property from X to E(X).
文摘After posing the axiom of linear algebra, the author develops how this allows the calculation of arbitrary base powers, which provides an instantaneous calculation of powers in a particular base such as base ten;first of all by developing the any base calculation of these powers, then by calculating triangles following the example of the “arithmetical” triangle of Pascal and showing how the formula of the binomial of Newton is driving the construction. The author also develops the consequences of the axiom of linear algebra for the decimal writing of numbers and the result that this provides for the calculation of infinite sums of the inverse of integers to successive powers. Then the implications of these new forms of calculation on calculator technologies, with in particular the storage of triangles which calculate powers in any base and the use of a multiplication table in a very large canonical base are discussed.
文摘In this article we shall examine several different types of figurative numbers which have been studied extensively over the period of 2500 years, and currently scattered on hundreds of websites. We shall discuss their computation through simple recurrence relations, patterns and properties, and mutual relationships which have led to curious results in the field of elementary number theory. Further, for each type of figurative numbers we shall show that the addition of first finite numbers and infinite addition of their inverses often require new/strange techniques. We sincerely hope that besides experts, students and teachers of mathematics will also be benefited with this article.