期刊文献+
共找到3,203篇文章
< 1 2 161 >
每页显示 20 50 100
Context-dependent role of sirtuin 2 in inflammation
1
作者 NoemíSola-Sevilla Maider Garmendia-Berges +1 位作者 MCarmen Mera-Delgado Elena Puerta 《Neural Regeneration Research》 SCIE CAS 2025年第3期682-694,共13页
Sirtuin 2 is a member of the sirtuin family nicotinamide adenine dinucleotide(NAD~+)-dependent deacetylases, known for its regulatory role in different processes, including inflammation. In this context, sirtuin 2 has... Sirtuin 2 is a member of the sirtuin family nicotinamide adenine dinucleotide(NAD~+)-dependent deacetylases, known for its regulatory role in different processes, including inflammation. In this context, sirtuin 2 has been involved in the modulation of key inflammatory signaling pathways and transcription factors by deacetylating specific targets, such as nuclear factor κB and nucleotide-binding oligomerization domain-leucine-rich-repeat and pyrin domain-containing protein 3(NLRP3). However, whether sirtuin 2-mediated pathways induce a pro-or an anti-inflammatory response remains controversial. Sirtuin 2 has been implicated in promoting inflammation in conditions such as asthma and neurodegenerative diseases, suggesting that its inhibition in these conditions could be a potential therapeutic strategy. Conversely, arthritis and type 2 diabetes mellitus studies suggest that sirtuin 2 is essential at the peripheral level and, thus, its inhibition in these pathologies would not be recommended. Overall, the precise role of sirtuin 2 in inflammation appears to be context-dependent, and further investigation is needed to determine the specific molecular mechanisms and downstream targets through which sirtuin 2 influences inflammatory processes in various tissues and pathological conditions. The present review explores the involvement of sirtuin 2 in the inflammation associated with different pathologies to elucidate whether its pharmacological modulation could serve as an effective strategy for treating this prevalent symptom across various diseases. 展开更多
关键词 INTERFERON inflammation LIPOPOLYSACCHARIDE NEUROinflammation NLRP3 nuclear factorκB sirtuin 2
下载PDF
The miR-9-5p/CXCL11 pathway is a key target of hydrogen sulfide-mediated inhibition of neuroinflammation in hypoxic ischemic brain injury 被引量:1
2
作者 Yijing Zhao Tong Li +6 位作者 Zige Jiang Chengcheng Gai Shuwen Yu Danqing Xin Tingting Li Dexiang Liu Zhen Wang 《Neural Regeneration Research》 SCIE CAS CSCD 2024年第5期1084-1091,共8页
We previously showed that hydrogen sulfide(H2S)has a neuroprotective effect in the context of hypoxic ischemic brain injury in neonatal mice.However,the precise mechanism underlying the role of H2S in this situation r... We previously showed that hydrogen sulfide(H2S)has a neuroprotective effect in the context of hypoxic ischemic brain injury in neonatal mice.However,the precise mechanism underlying the role of H2S in this situation remains unclear.In this study,we used a neonatal mouse model of hypoxic ischemic brain injury and a lipopolysaccharide-stimulated BV2 cell model and found that treatment with L-cysteine,a H2S precursor,attenuated the cerebral infarction and cerebral atrophy induced by hypoxia and ischemia and increased the expression of miR-9-5p and cystathionineβsynthase(a major H2S synthetase in the brain)in the prefrontal cortex.We also found that an miR-9-5p inhibitor blocked the expression of cystathionineβsynthase in the prefrontal cortex in mice with brain injury caused by hypoxia and ischemia.Furthermore,miR-9-5p overexpression increased cystathionine-β-synthase and H2S expression in the injured prefrontal cortex of mice with hypoxic ischemic brain injury.L-cysteine decreased the expression of CXCL11,an miR-9-5p target gene,in the prefrontal cortex of the mouse model and in lipopolysaccharide-stimulated BV-2 cells and increased the levels of proinflammatory cytokines BNIP3,FSTL1,SOCS2 and SOCS5,while treatment with an miR-9-5p inhibitor reversed these changes.These findings suggest that H2S can reduce neuroinflammation in a neonatal mouse model of hypoxic ischemic brain injury through regulating the miR-9-5p/CXCL11 axis and restoringβ-synthase expression,thereby playing a role in reducing neuroinflammation in hypoxic ischemic brain injury. 展开更多
关键词 chemokine(C-X-C motif)ligand 11 cystathionineβsynthase H2S hypoxic ischemic brain injury inflammation L-CYSTEINE lipopolysaccharide microglia miR-9-5p neuroprotection
下载PDF
Metabolic reprogramming of the inflammatory response in the nervous system:the crossover between inflammation and metabolism
3
作者 Jesus Amo-Aparicio Charles A.Dinarello Ruben Lopez-Vales 《Neural Regeneration Research》 SCIE CAS CSCD 2024年第10期2189-2201,共13页
Metabolism is a fundamental process by which biochemicals are broken down to produce energy(catabolism) or used to build macromolecules(anabolism). Metabolism has received renewed attention as a mechanism that generat... Metabolism is a fundamental process by which biochemicals are broken down to produce energy(catabolism) or used to build macromolecules(anabolism). Metabolism has received renewed attention as a mechanism that generates molecules that modulate multiple cellular responses. This was first identified in cancer cells as the Warburg effect, but it is also present in immunocompetent cells. Studies have revealed a bidirectional influence of cellular metabolism and immune cell function, highlighting the significance of metabolic reprogramming in immune cell activation and effector functions. Metabolic processes such as glycolysis, oxidative phosphorylation, and fatty acid oxidation have been shown to undergo dynamic changes during immune cell response, facilitating the energetic and biosynthetic demands. This review aims to provide a better understanding of the metabolic reprogramming that occurs in different immune cells upon activation, with a special focus on central nervous system disorders. Understanding the metabolic changes of the immune response not only provides insights into the fundamental mechanisms that regulate immune cell function but also opens new approaches for therapeutic strategies aimed at manipulating the immune system. 展开更多
关键词 central nervous system fatty acid oxidation GLYCOLYSIS inflammation macrophage METABOLISM microglia NEURODEGENERATION oxidative phosphorylation
下载PDF
Quercetin Alleviates Lipopolysaccharide-Induced Cardiac Inflammation via Inhibiting Autophagy and Programmed Cell Death
4
作者 YU Jin Hai HU Guo Liang +3 位作者 GUO Xiao Quan CAO Hua Bin XIA Zhao Fei AMIN Buhe 《Biomedical and Environmental Sciences》 SCIE CAS CSCD 2024年第1期54-70,共17页
Objective The aim of this study is to explore the potential modulatory role of quercetin against Endotoxin or lipopolysaccharide(LPS)induced septic cardiac dysfunction.Methods Specific pathogen-free chicken embryos(n=... Objective The aim of this study is to explore the potential modulatory role of quercetin against Endotoxin or lipopolysaccharide(LPS)induced septic cardiac dysfunction.Methods Specific pathogen-free chicken embryos(n=120)were allocated untreated control,phosphate buffer solution(PBS)vehicle,PBS with ethanol vehicle,LPS(500 ng/egg),LPS with quercetin treatment(10,20,or 40 nmol/egg,respectively),Quercetin groups(10,20,or 40 nmol/egg).Fifteenday-old embryonated eggs were inoculated with abovementioned solutions via the allantoic cavity.At embryonic day 19,the hearts of the embryos were collected for histopathological examination,RNA extraction,real-time polymerase chain reaction,immunohistochemical investigations,and Western blotting.Results They demonstrated that the heart presented inflammatory responses after LPS induction.The LPS-induced higher mRNA expressions of inflammation-related factors(TLR4,TNFα,MYD88,NF-κB1,IFNγ,IL-1β,IL-8,IL-6,IL-10,p38,MMP3,and MMP9)were blocked by quercetin with three dosages.Quercetin significantly decreased immunopositivity to TLR4 and MMP9 in the treatment group when compared with the LPS group.Quercetin significantly decreased protein expressions of TLR4,IFNγ,MMP3,and MMP9 when compared with the LPS group.Quercetin treatment prevented LPS-induced increase in the mRNA expression of Claudin 1 and ZO-1,and significantly decreased protein expression of claudin 1 when compared with the LPS group.Quercetin significantly downregulated autophagyrelated gene expressions(PPARα,SGLT1,APOA4,AMPKα1,AMPKα2,ATG5,ATG7,Beclin-1,and LC3B)and programmed cell death(Fas,Bcl-2,CASP1,CASP12,CASP3,and RIPK1)after LPS induction.Quercetin significantly decreased immunopositivity to APOA4,AMPKα2,and LC3-II/LC3-I in the treatment group when compared with the LPS group.Quercetin significantly decreased protein expressions of AMPKα1,LC3-I,and LC3-II.Quercetin significantly decreased the protein expression to CASP1 and CASP3 by immunohistochemical investigation or Western blotting in treatment group when compared with LPS group.Conclusion Quercetin alleviates cardiac inflammation induced by LPS through modulating autophagy,programmed cell death,and myocardiocytes permeability. 展开更多
关键词 QUERCETIN LIPOPOLYSACCHARIDE inflammation AUTOPHAGY Programmed cell death Myocardiocytes permeability
下载PDF
Coumarin and eugenol ameliorate LPS-induced inflammation in RAW 264.7 cells via modulating the NLRP3 inflammasome pathway
5
作者 Jyotsana Bakshi Somnath Singh KP Mishra 《Asian Pacific Journal of Tropical Biomedicine》 SCIE CAS 2024年第1期40-46,共7页
Objective:To investigate the underlying mechanism of anti-inflammatory action of coumarin and eugenol in lipopolysaccharide(LPS)-stimulated RAW 264.7 cells.Methods:RAW 264.7 cells were treated with 2.5μg/mL of LPS,50... Objective:To investigate the underlying mechanism of anti-inflammatory action of coumarin and eugenol in lipopolysaccharide(LPS)-stimulated RAW 264.7 cells.Methods:RAW 264.7 cells were treated with 2.5μg/mL of LPS,50μM of coumarin,and 50μM eugenol for 24 h.The viability of the cells was assessed using MTT assay.The production of nitric oxide was determined using Griess reagent and DCFH-DA was used to measure the production of reactive oxygen species.The protein expression of NLRP3,IL-1β,NF-κB,and cyclooxygenase 2 was assessed using Western blot analysis.Results:Coumarin and eugenol showed anti-inflammatory effects against LPS-induced inflammatory response by ameliorating the expression of NLRP3 inflammasome and NF-κB,which further led to a subsequent reduction in IL-1β,nitric oxide,and reactive oxygen species.Conclusions:Coumarin and eugenol exert their anti-inflammatory activities by modulating the NLRP3 inflammasome pathway and NF-κB.These compounds may have promising therapeutic applications for the treatment of various inflammatory diseases. 展开更多
关键词 inflammation CYTOKINES COUMARIN EUGENOL NLRP3 LPS
下载PDF
Tilapia Head Glycolipid Alleviates Indomethacin-Induced Gastric Ulcer via Regulating Oxidative Stress and Inflammation Through COX/PGE2 Signaling Pathway in Adult Rats
6
作者 WANG Bohui WU Haixing +6 位作者 SHAO Mingyang JIANG Mengqi SU Ruiheng GAO Xia XIA Guanghua SHI Haohao SHEN Xuanri 《Journal of Ocean University of China》 SCIE CAS CSCD 2024年第3期743-754,共12页
The aim of this experiment was to investigate the ameliorative effect and molecular mechanism of tilapia head glycolipid(TH-GL)on indomethacin(IDM)-induced gastric ulcer in male Sprague Dawley(SD)rats.The gastric ulce... The aim of this experiment was to investigate the ameliorative effect and molecular mechanism of tilapia head glycolipid(TH-GL)on indomethacin(IDM)-induced gastric ulcer in male Sprague Dawley(SD)rats.The gastric ulcer model was established by oral administration of 30mgkg^(-1) IDM after 7 days of TH-GL or omeprazole(OME)administration in rats.Then the macroscopic gastric injury symptoms,gastric mucosa protective factor cyclooxygenase 1(COX-1),cyclooxygenase 2(COX-2),prostaglandin E_(2)(PGE_(2)),the levels of oxidative stress,and inflammatory cytokine expression levels in the rats were analyzed.The experimental results showed that multiple ulcers appeared on the gastric surface of the rats in the model group.Compared to the model group,TH-GL significantly alleviated gastric ulcers and reduced the gastric damage index in rats.In addition,TH-GL significantly promoted the expression of constitutive enzyme COX-1 while inhibited the expression of inducible enzyme COX-2,and make PGE2 maintain at normal levels.TH-GL also inhibited oxidative stress and inflammatory responses,increased superoxide dismutase(SOD)activity and glutathione(GSH)content,decreased the level of malondialdehyde(MDA)and the content of pro-inflammatory factor.In conclusion,these results suggested that TH-GL could maintain the expression levels of COX-1 and PGE2 while inhibit the expression of COX-2 in the gastric of rat and then prevent IDM-induced gastric ulcer,which may be related to the regulation of oxidative stress and inflammatory response.Therefore,TH-GL might be a new option for the prevention of gastric diseases induced by IDM. 展开更多
关键词 tilapia head glycolipid indomethacin gastric ulcer oxidative stress inflammation
下载PDF
Bowel function and inflammation: Is motility the other side of the coin?
7
作者 Alba Panarese 《World Journal of Gastroenterology》 SCIE CAS 2024年第14期1963-1967,共5页
Digestion and intestinal absorption allow the body to sustain itself and are the emblematic functions of the bowel.On the flip side,functions also arise from its role as an interface with the environment.Indeed,the gu... Digestion and intestinal absorption allow the body to sustain itself and are the emblematic functions of the bowel.On the flip side,functions also arise from its role as an interface with the environment.Indeed,the gut houses microorganisms,collectively known as the gut microbiota,which interact with the host,and is the site of complex immune activities.Its role in human pathology is complex and scientific evidence is progressively elucidating the functions of the gut,especially regarding the pathogenesis of chronic intestinal diseases and inflammatory conditions affecting various organs and systems.This editorial aims to highlight and relate the factors involved in the pathogenesis of intestinal and systemic inflammation. 展开更多
关键词 MOTILITY inflammation PATHOGENESIS Vitamin D MICROBIOTA GUT Chronic intestinal pseudo-obstruction
下载PDF
All-trans retinoic acid alleviates transmissible gastroenteritis virus-induced intestinal inflammation and barrier dysfunction in weaned piglets
8
作者 Junning Pu Daiwen Chen +10 位作者 Gang Tian Jun He Ping Zheng Zhiqing Huang Xiangbing Mao Jie Yu Yuheng Luo Junqiu Luo Hui Yan Aimin Wu Bing Yu 《Journal of Animal Science and Biotechnology》 SCIE CAS CSCD 2024年第3期1131-1144,共14页
Background Transmissible gastroenteritis virus(TGEV)is one of the main pathogens causing severe diarrhea of pig-lets.The pathogenesis of TGEV is closely related to intestinal inflammation.All-trans retinoic acid(ATRA)... Background Transmissible gastroenteritis virus(TGEV)is one of the main pathogens causing severe diarrhea of pig-lets.The pathogenesis of TGEV is closely related to intestinal inflammation.All-trans retinoic acid(ATRA)is the main active metabolite of vitamin A,which has immunomodulatory and anti-inflammatory properties.However,it is unclear whether ATRA can alleviate TGEV-induced intestinal inflammation and barrier dysfunction in piglets.This study aimed to investigate the effects of ATRA on growth performance,diarrhea,intestinal inflammation and intesti-nal barrier integrity of TGEV-challenged piglets.Methods In a 19-d study,32 weaned piglets were randomly divided into 4 treatments:Control group(basal diet),TGEV group(basal diet+TGEV challenge),TGEV+ATRA5 group(basal diet+5 mg/d ATRA+TGEV challenge)and TGEV+ATRA15 group(basal diet+15 mg/d ATRA+TGEV challenge).On d 14,piglets were orally administered TGEV or the sterile medium.Results Feeding piglets with 5 and 15 mg/d ATRA alleviated the growth inhibition and diarrhea induced by TGEV(P<0.05).Feeding piglets with 5 and 15 mg/d ATRA also inhibited the increase of serum diamine oxidase(DAO)activ-ity and the decrease of occludin and claudin-1 protein levels in jejunal mucosa induced by TGEV,and maintained intestinal barrier integrity(P<0.05).Meanwhile,5 mg/d ATRA feeding increased the sucrase activity and the expres-sions of nutrient transporter related genes(GLUT2 and SLC7A1)in jejunal mucosa of TGEV-challenged piglets(P<0.05).Furthermore,5 mg/d ATRA feeding attenuated TGEV-induced intestinal inflammatory response by inhibit-ing the release of interleukin(IL)-1β,IL-8 and tumor necrosis factor-α(TNF-α),and promoting the secretion of IL-10 and secretory immunoglobulin A(sIgA)(P<0.05).Feeding 5 mg/d ATRA also down-regulated the expressions of Toll-like receptors and RIG-I like receptors signaling pathway related genes(TLR3,TLR4,RIG-I,MyD88,TRIF and MAVS)and the phosphorylation level of nuclear factor-κB-p65(NF-κB p65),and up-regulated the inhibitor kappa B alpha(IκBα)protein level in jejunal mucosa of TGEV-challenged piglets(P<0.05).Conclusions ATRA alleviated TGEV-induced intestinal barrier damage by inhibiting inflammatory response,thus improving the growth performance and inhibiting diarrhea of piglets.The mechanism was associated with the inhibi-tion of NF-κB signaling pathway mediated by TLR3,TLR4 and RIG-I. 展开更多
关键词 All-trans retinoic acid inflammation Intestinal barrier PIGLETS Transmissible gastroenteritis virus
下载PDF
Licorice-saponin A3 is a broad-spectrum inhibitor for COVID-19 by targeting viral spike and anti-inflammation
9
作者 Yang Yi Wenzhe Li +18 位作者 Kefang Liu Heng Xue Rong Yu Meng Zhang Yang-Oujie Bao Xinyuan Lai Jingjing Fan Yuxi Huang Jing Wang Xiaomeng Shi Junhua Li Hongping Wei Kuanhui Xiang Linjie Li Rong Zhang Xin Zhao Xue Qiao Hang Yang Min Ye 《Journal of Pharmaceutical Analysis》 SCIE CAS CSCD 2024年第1期115-127,共13页
Currently,human health due to corona virus disease 2019(COVID-19)pandemic has been seriously threatened.The coronavirus severe acute respiratory syndrome coronavirus 2(SARS-CoV-2)spike(S)protein plays a crucial role i... Currently,human health due to corona virus disease 2019(COVID-19)pandemic has been seriously threatened.The coronavirus severe acute respiratory syndrome coronavirus 2(SARS-CoV-2)spike(S)protein plays a crucial role in virus transmission and several S-based therapeutic approaches have been approved for the treatment of COVID-19.However,the efficacy is compromised by the SARS-CoV-2 evolvement and mutation.Here we report the SARS-CoV-2 S protein receptor-binding domain(RBD)inhibitor licorice-saponin A3(A3)could widely inhibit RBD of SARS-CoV-2 variants,including Beta,Delta,and Omicron BA.1,XBB and BQ1.1.Furthermore,A3 could potently inhibit SARS-CoV-2 Omicron virus in Vero E6 cells,with EC50 of 1.016μM.The mechanism was related to binding with Y453 of RBD determined by hydrogen-deuterium exchange mass spectrometry(HDX-MS)analysis combined with quantum mechanics/molecular mechanics(QM/MM)simulations.Interestingly,phosphoproteomics analysis and multi fluorescent immunohistochemistry(mIHC)respectively indicated that A3 also inhibits host inflammation by directly modulating the JNK and p38 mitogen-activated protein kinase(MAPK)pathways and rebalancing the corresponding immune dysregulation.This work supports A3 as a promising broad-spectrum small molecule drug candidate for COVID-19. 展开更多
关键词 COVID-19 inflammation Licorice-saponin A3 Receptor-binding domain(RBD) SARS-CoV-2
下载PDF
Betulin protects against isoproterenol-induced myocardial injury by inhibiting NF-κB signaling and attenuating cardiac inflammation and oxidative stress in rats
10
作者 Hital Shah Tejal Gandhi 《Asian Pacific Journal of Tropical Biomedicine》 SCIE CAS 2024年第6期236-244,共9页
Objective:To investigate the cardioprotective potential of betulin in isoproterenol(ISO)-induced myocardial injury in rats.Methods:Wistar rats were divided into five groups(n=10):normal,ISO,nebivolol 5 mg/kg,and betul... Objective:To investigate the cardioprotective potential of betulin in isoproterenol(ISO)-induced myocardial injury in rats.Methods:Wistar rats were divided into five groups(n=10):normal,ISO,nebivolol 5 mg/kg,and betulin(20&40 mg/kg).Nebivolol and betulin were administered orally for 29 days.ISO(85 mg/kg)was administered subcutaneously on day 27 and day 28 to induce myocardial injury.On day 29,blood was collected for determination of cardiac markers,and hemodynamic parameters were investigated.The levels of oxidative stress markers and the gene expressions of apoptotic markers and inflammatory mediators were evaluated.Moreover,2,3,5-triphenyltetrazolium chloride staining and histopathological analysis were also performed.Results:Betulin reduced the size of myocardial infarction,decreased elevated levels of cardiac enzymes,and maintained hemodynamic functions.It also inhibited ISO-induced upregulation of Bax,caspase-3,NF-κB,and IL-6,enhanced endogenous antioxidant enzymes,and reduced lipid peroxidation.Additionally,pretreatment with betulin alleviated myocardial ischemic damage,as reflected by reduced myonecrosis,edema,and inflammatory changes.Conclusions:Betulin exhibits strong cardioprotective activity against ISO-induced myocardial injury by anti-inflammatory,anti-apoptotic,and antioxidant activities. 展开更多
关键词 NF-ΚB ISOPROTERENOL BETULIN Myocardial injury Oxidative stress inflammation Apoptosis
下载PDF
Benzydamine hydrochloride ameliorates ethanol-induced inflammation in RAW 264.7 macrophages by stabilizing redox homeostasis
11
作者 Tiasha Dasgupta Venkatraman Manickam 《Asian Pacific Journal of Tropical Biomedicine》 SCIE CAS 2024年第2期73-81,I0006-I0009,共13页
Objective:To evaluate the protective effect of benzydamine hydrochloride against ethanol-induced oxidative stress and inflammation in RAW 264.7 macrophages.Methods:RAW 264.7 macrophages were treated with ethanol(100 m... Objective:To evaluate the protective effect of benzydamine hydrochloride against ethanol-induced oxidative stress and inflammation in RAW 264.7 macrophages.Methods:RAW 264.7 macrophages were treated with ethanol(100 mM)and benzydamine hydrochloride(7.5μM).The imflammatory status was confirmed by measuring pro-(TNF-αand IL-6)and anti-inflammatory(IL-10)cytokines through ELISA and RT-PCR assays.Reactive oxygen species generation and mitochondrial membrane potential were investigated to study the protective role of benzydamine hydrochloride against ethanol-induced oxidative stress.Apoptosis detection was also investigated using flow cytometry and acridine orange/ethidium bromide staining.Results:Benzydamine hydrochloride significantly decreased the secretion of TNF-αand IL-6,as well as the generation of reactive oxygen species inside the cells,thereby stabilizing the mitochondrial membrane potential and reducing DNA fragmentation.The ethanol-induced cellular necrosis was also reversed by the administration of benzydamine hydrochloride.Conclusions:Benzydamine hydrochloride ameliorates ethanol-induced cell apoptosis and inflammation in RAW macrophages. 展开更多
关键词 ALCOHOL Benzydamine hydrochloride inflammation Oxidative stress Apoptosis
下载PDF
Novel insights in phosphodiesterase 4 subtype inhibition to target neuroinflammation and stimulate remyelination
12
作者 Melissa Schepers Tim Vanmierlo 《Neural Regeneration Research》 SCIE CAS CSCD 2024年第3期493-494,共2页
In neurodegenerative and classically demyelinating disorders such as multiple sclerosis(MS),spinal cord injury(SCI),stroke,and Charcot-Marie-Tooth disease,glial functioning is compromised and nervous tissue integrity ... In neurodegenerative and classically demyelinating disorders such as multiple sclerosis(MS),spinal cord injury(SCI),stroke,and Charcot-Marie-Tooth disease,glial functioning is compromised and nervous tissue integrity is lost.Recently,primary neurodegenerative disorders such as Alzheimer’s disease,amyotrophic lateral sclerosis(ALS),and Parkinson’s disease(PD)are increasingly linked to impaired oligodendroglia functioning upon neurodegeneration.Due to the destructive micro-environment created by nervous tissue damage,the progressive cellular loss in these disorders,and the amitotic nature of neurons,spontaneous endogenous repair process are limited in nature.Hence,there is a medical need for efficient therapeutic strategies capable of supporting neuro-reparative processes to occur,likely supported by improved oligodendroglia cell functioning. 展开更多
关键词 IMPAIRED inflammation Marie
下载PDF
Protective effects of CY-09 and astaxanthin on NaIO_(3)-induced photoreceptor inflammation via the NLRP3/autophagy pathway
13
作者 Xiao-Li Wang Yun-Xia Gao +1 位作者 Qiong-Zhen Yuan Ming Zhang 《International Journal of Ophthalmology(English edition)》 SCIE CAS 2024年第7期1217-1231,共15页
AIM:To study the effect of the NLRP3/autophagy pathway on the photoreceptor inflammatory response and the protective mechanism of CY-09 and astaxanthin(AST).METHODS:ICR mice were intraperitoneally injected NaIO_(3),CY... AIM:To study the effect of the NLRP3/autophagy pathway on the photoreceptor inflammatory response and the protective mechanism of CY-09 and astaxanthin(AST).METHODS:ICR mice were intraperitoneally injected NaIO_(3),CY-09,AST successively and divided into 5 groups,including the control,NaIO_(3),NaIO_(3)+CY-09,NaIO_(3)+AST,and NaIO_(3)+CY-09+AST groups.Spectral domain optical coherence tomography and flash electroretinogram were examined and the retina tissues were harvested for immunohistochemistry,enzyme linked immunosorbent assay(ELISA),and Western blotting.Retinal pigment epithelium cell line(ARPE-19 cells)and mouse photoreceptor cells line(661W cells)were also treated with NaIO_(3),CY-09,and AST successively.Cell proliferation was assessed by cell counting kit-8(CCK-8)assay.Apoptosis was analyzed by flow cytometry.Changes in autophagosome morphology were observed by transmission electron microscopy.Quantitative polymerase chain reaction(qPCR)was used to detect NLRP3 and caspase-1.NLRP3,caspase-1,cleaved caspase-1,p62,Beclin-1,and LC3 protein levels were measured by Western blotting.IL-1βand IL-18 were measured by ELISA.RESULTS:Compared with the control group,the activity of NaIO_(3)-treated 661W cells decreased within 24 and 48h,apoptosis increased,NLRP3,caspase-1,IL-1βand IL-18 levels increased,and autophagy-related protein levels increased(P<0.05).Compared with NaIO_(3) group,CY-09 and AST inhibited apoptosis(P<0.05),reduced NLRP3,caspase-1,IL-1βand IL-18 expression(P<0.05),and inhibited autophagy.Compared with the other groups,CY-09 combined with AST significantly decreased NLRP3 expression and inhibited the expression of the autophagy-related proteins p62,Beclin-1,and LC3 in vitro and in vivo(P<0.05).CONCLUSION:CY-09 and AST inhibit NaIO_(3)-induced inflammatory damage through the NLRP3/autophagy pathway in vitro and in vivo.CY-09 and AST may protect retina from inflammatory injury. 展开更多
关键词 CY-09 ASTAXANTHIN retinal degeneration photoreceptor cells inflammation NLRP3
下载PDF
Monomeric C-reactive protein:a link between chronic inflammation and neurodegeneration?
14
作者 Nicoleta Arnaut Ylenia Pastorello Mark Slevin 《Neural Regeneration Research》 SCIE CAS CSCD 2024年第8期1643-1644,共2页
Pre-diabetic insulin resistance is associated with sub-clinical inflammation and concomitant increase in systemic C-reactive protein(CRP)levels.Type 2 diabetes mellitus(T2DM)patients register even higher chronic level... Pre-diabetic insulin resistance is associated with sub-clinical inflammation and concomitant increase in systemic C-reactive protein(CRP)levels.Type 2 diabetes mellitus(T2DM)patients register even higher chronic levels of inflammation,with excess circulating CRP originating from both typical hepatic synthesis,and also visceral white adipose tissue. 展开更多
关键词 inflammation REACTIVE CLINICAL
下载PDF
Advanced brain organoids for neuroinflammation disease modeling
15
作者 Sonia Sabate-Soler Henry Kurniawan Jens Christian Schwamborn 《Neural Regeneration Research》 SCIE CAS CSCD 2024年第1期154-155,共2页
Brain organoids mimic closely the embryonic human brain:Over the last decade,the development of human organoid systems has evolved rapidly.Different tissues have been modeled with organoids,such as the gut,lung,liver,... Brain organoids mimic closely the embryonic human brain:Over the last decade,the development of human organoid systems has evolved rapidly.Different tissues have been modeled with organoids,such as the gut,lung,liver,kidney retina and brain.These systems have a high cellular heterogeneity,with many cell types integrated into the same system.Organoids'cellular populations interact between and amongst each other in a cellular and molecular level,which represents an advantage with respects to monolayer 2D cell culture systems. 展开更多
关键词 inflammation LUNG KIDNEY
下载PDF
Metabolite acetyl-L-carnitine participates in Bifidobacterium animalis F1-7 to ameliorate atherosclerotic inflammation by downregulating theTLR4/NF-κB pathway
16
作者 Xi Liang Zhe Zhang +7 位作者 Xiaoying Tian Qingyu Cui Haiyan Lu Maozhen Zhao Tongjie Liu Huaxi Yi Pimin Gong Lanwei Zhang 《Food Science and Human Wellness》 SCIE CSCD 2024年第2期813-822,共10页
This study aimed to explore the effect of Bifidobacterium animalis F1-7 on the improvement of atherosclerotic inflammation.Arteriosclerosis model ApoE^(-/-)mice were orally administered with B.animalis F1-7 for 12 wee... This study aimed to explore the effect of Bifidobacterium animalis F1-7 on the improvement of atherosclerotic inflammation.Arteriosclerosis model ApoE^(-/-)mice were orally administered with B.animalis F1-7 for 12 weeks.The probiotic intervention reduced the plaque areas in aorta and the accumulation of macrophages,and downregulated the expression of toll-like receptor 4(TLR4)/nuclear factorκB(NF-κB)pathway to reduce the levels of inflammatory factors.The widely-targeted metabolomics analysis showed that acetyl-L-carnitine(ALC)in the intestine of atherosclerotic mice was significantly increased after B.animalis F1-7 intervention.Correlation analysis proved that ALC was associated with atherosclerotic inflammatory response.By using oxidized low density lipoprotein induced macrophage foam cells,we further verified that ALC could reduce lipid accumulation and inflammatory response in foam cells by downregulating the TLR4/NF-κB pathway.Finally,our results revealed that B.animalis F1-7 upregulated the metabolite ALC to downregulate the inflammatory responses,leading to the reduction of plaque accumulation of atherosclerosis. 展开更多
关键词 Bifidobacterium animalis F1-7 Atherosclerosis inflammation METABONOMICS ACETYL-L-CARNITINE
下载PDF
Boeravinone B ameliorates allergic nasal inflammation by modulating the GATA-3/T-bet signaling pathway in a mouse model of allergic rhinitis
17
作者 Ben Ye Ji-Zhe Wang 《Asian Pacific Journal of Tropical Biomedicine》 SCIE CAS 2024年第6期245-252,共8页
Objective:To evaluate the anti-allergic effect of boeravinone B against ovalbumin-induced allergic rhinitis in mice and explore its possible mechanism.Methods:For the induction of allergic rhinitis,mice were intraperi... Objective:To evaluate the anti-allergic effect of boeravinone B against ovalbumin-induced allergic rhinitis in mice and explore its possible mechanism.Methods:For the induction of allergic rhinitis,mice were intraperitoneally sensitized and intranasally challenged with ovalbumin,as well as orally received various concentrations of boeravinone B.Nasal mucosal inflammation,and the levels of nitric oxide,β-hexosaminidase,IFN-γ,LTC-4,myeloperoxidase,Nrf2,HO-1,GATA-3,ROR-γ,T-bet,antioxidant parameters,and allergen-specific cytokines were assessed.Results:Boeravinone B markedly reduced ovalbumin-induced increase in the number of episodes of nasal sneezing,rubbing,and discharge,as well as the levels of IgE,IgG1,andβ-hexosaminidase(P<0.05).It also significantly reduced differential cell count,myeloperoxidase,oxide-nitrosative stress,and the levels of IL-1β,IL-4,IL-5,IL-6,IL-13,IL-17,tumor necrosis factor-α,GATA-3,and ROR-γwhile enhancing the level of T-bet.Conclusions:Boeravinone B is a potential therapeutic agent for allergic rhinitis by modulating various inflammatory mediators and immune responses. 展开更多
关键词 Allergic reaction Boeravinone B Oxidative stress inflammation OVALBUMIN
下载PDF
Ethyl acetate fraction of Sargassum pallidum extract attenuates particulate matter-induced oxidative stress and inflammation in keratinocytes and zebrafish
18
作者 Wook Chul Kim Ji-Won Park +3 位作者 Bohyun Yun WonWoo Lee Kyung-Min Choi Seung-Hong Lee 《Asian Pacific Journal of Tropical Biomedicine》 SCIE CAS 2024年第4期137-146,共10页
Objective:To evaluate the effect of the ethyl acetate fraction derived from Sargassum pallidum extract against particulate matter(PM)-induced oxidative stress and inflammation in HaCaT cells and zebrafish.Methods:HaCa... Objective:To evaluate the effect of the ethyl acetate fraction derived from Sargassum pallidum extract against particulate matter(PM)-induced oxidative stress and inflammation in HaCaT cells and zebrafish.Methods:HaCaT cells and zebrafish were used to evaluate the protective effects of the ethyl acetate fraction of Sargassum pallidum extract against PM-induced oxidative stress and inflammation.The production of nitric oxide(NO),intracellular ROS,prostaglandin E_(2)(PGE_(2)),and pro-inflammatory cytokines,and the expression levels of COX-2,iNOS,and NF-κB were evaluated in PM-induced HaCaT cells.Furthermore,the levels of ROS,NO,and lipid peroxidation were assessed in the PM-exposed zebrafish model.Results:The ethyl acetate fraction of Sargassum pallidum extract significantly decreased the production of NO,intracellular ROS,and PGE_(2) in PM-induced HaCaT cells.In addition,the fraction markedly suppressed the levels of pro-inflammatory cytokines and inhibited the expression levels of COX-2,iNOS,and NF-κB.Furthermore,it displayed remarkable protective effects against PM-induced inflammatory response and oxidative stress,represented by the reduction of NO,ROS,and lipid peroxidation in zebrafish.Conclusions:The ethyl acetate fraction of Sargassum pallidum extract exhibits a protective effect against PM-induced oxidative stress and inflammation both in vitro and in vivo and has the potential as a candidate for the development of pharmaceutical and cosmeceutical products. 展开更多
关键词 Particulate matter inflammation Oxidative stress Sargassum pallidum Ethyl acetate fraction ZEBRAFISH
下载PDF
Immunomodulation of Proton-activated G Protein-coupled Receptors in Inflammation
19
作者 Min-shan LI Xiang-hong WANG Heng WANG 《Current Medical Science》 SCIE CAS 2024年第3期475-484,共10页
Proton-activated G protein-coupled receptors(GPCRs),initially discovered by Ludwig in 2003,are widely distributed in various tissues.These receptors have been found to modulate the immune system in several inflammator... Proton-activated G protein-coupled receptors(GPCRs),initially discovered by Ludwig in 2003,are widely distributed in various tissues.These receptors have been found to modulate the immune system in several inflammatory diseases,including inflammatory bowel disease,atopic dermatitis,and asthma.Proton-activated GPCRs belong to the G protein-coupled receptor family and can detect alternations in extracellular pH.This detection triggers downstream signaling pathways within the cells,ultimately influencing the function of immune cells.In this review,we specifically focused on investigating the immune response of proton-activated GPCRs under inflammatory conditions. 展开更多
关键词 proton-activated G protein-coupled receptors inflammation IMMUNOMODULATION DISEASE
下载PDF
High mobility group box 1 in the central nervous system:regeneration hidden beneath inflammation
20
作者 Hanki Kim Bum Jun Kim +4 位作者 Seungyon Koh Hyo Jin Cho Xuelian Jin Byung Gon Kim Jun Young Choi 《Neural Regeneration Research》 SCIE CAS 2025年第1期107-115,共9页
High-mobility group box 1 was first discovered in the calf thymus as a DNA-binding nuclear protein and has been widely studied in diverse fields,including neurology and neuroscience.High-mobility group box 1 in the ex... High-mobility group box 1 was first discovered in the calf thymus as a DNA-binding nuclear protein and has been widely studied in diverse fields,including neurology and neuroscience.High-mobility group box 1 in the extracellular space functions as a pro-inflammatory damage-associated molecular pattern,which has been proven to play an important role in a wide variety of central nervous system disorders such as ischemic stroke,Alzheimer’s disease,frontotemporal dementia,Parkinson’s disease,multiple sclerosis,epilepsy,and traumatic brain injury.Several drugs that inhibit high-mobility group box 1 as a damage-associated molecular pattern,such as glycyrrhizin,ethyl pyruvate,and neutralizing anti-high-mobility group box 1 antibodies,are commonly used to target high-mobility group box 1 activity in central nervous system disorders.Although it is commonly known for its detrimental inflammatory effect,high-mobility group box 1 has also been shown to have beneficial pro-regenerative roles in central nervous system disorders.In this narrative review,we provide a brief summary of the history of high-mobility group box 1 research and its characterization as a damage-associated molecular pattern,its downstream receptors,and intracellular signaling pathways,how high-mobility group box 1 exerts the repair-favoring roles in general and in the central nervous system,and clues on how to differentiate the pro-regenerative from the pro-inflammatory role.Research targeting high-mobility group box 1 in the central nervous system may benefit from differentiating between the two functions rather than overall suppression of high-mobility group box 1. 展开更多
关键词 central nervous system damage-associated molecular pattern ethyl pyruvate glycyrhizzin high mobility group box 1 inflammation neural stem cells NEURODEVELOPMENT oligodendrocyte progenitor cells redox status REGENERATION
下载PDF
上一页 1 2 161 下一页 到第
使用帮助 返回顶部