Discriminant space defining area classes is an important conceptual construct for uncertainty characterization in area-class maps.Discriminant models were promoted as they can enhance consistency in area-class mapping...Discriminant space defining area classes is an important conceptual construct for uncertainty characterization in area-class maps.Discriminant models were promoted as they can enhance consistency in area-class mapping and replicability in error modeling.As area classes are rarely completely separable in empirically realized discriminant space,where class inseparabil-ity becomes more complicated for change categorization,we seek to quantify uncertainty in area classes(and change classes)due to measurement errors and semantic discrepancy separately and hence assess their relative margins objectively.Experiments using real datasets were carried out,and a Bayesian method was used to obtain change maps.We found that there are large differences be-tween uncertainty statistics referring to data classes and information classes.Therefore,uncertainty characterization in change categorization should be based on discriminant modeling of measurement errors and semantic mismatch analysis,enabling quanti-fication of uncertainty due to partially random measurement errors,and systematic categorical discrepancies,respectively.展开更多
It is important to describe misclassification errors in land cover maps and to quantify their propagation through geo-processing to resultant information products,such as land cover change maps.Geostatistical simulati...It is important to describe misclassification errors in land cover maps and to quantify their propagation through geo-processing to resultant information products,such as land cover change maps.Geostatistical simulation is widely used in error modeling,as it can generate equal-probable realizations of the fields being considered,which can be summarized to facilitate error propagation analysis.To fix noninvariance in indicator simulation,discriminant space-based methods were proposed to enhance consistency in area-class mapping and replicability in uncertainty modeling,as the former is achieved by imposing means while the latter is ensured by projecting spatio-temporal correlated residuals in discriminant space to geographic space through a mapping process.This paper explores discriminant models for error propagation in land cover change detection,followed by experiments based on bi-temporal remote sensing images.It was found that misclassification error propagation is effectively characterized with discriminant covariate-based stochastic simulation,where spatio-temporal interdependence is taken into account.展开更多
基金Supported by the National Natural Science Foundation of China (No.41171346,No. 41071286)the Fundamental Research Funds for the Central Universities (No. 20102130103000005)the National 973 Program of China (No. 2007CB714402‐5)
文摘Discriminant space defining area classes is an important conceptual construct for uncertainty characterization in area-class maps.Discriminant models were promoted as they can enhance consistency in area-class mapping and replicability in error modeling.As area classes are rarely completely separable in empirically realized discriminant space,where class inseparabil-ity becomes more complicated for change categorization,we seek to quantify uncertainty in area classes(and change classes)due to measurement errors and semantic discrepancy separately and hence assess their relative margins objectively.Experiments using real datasets were carried out,and a Bayesian method was used to obtain change maps.We found that there are large differences be-tween uncertainty statistics referring to data classes and information classes.Therefore,uncertainty characterization in change categorization should be based on discriminant modeling of measurement errors and semantic mismatch analysis,enabling quanti-fication of uncertainty due to partially random measurement errors,and systematic categorical discrepancies,respectively.
基金Supported by the National Natural Science Foundation of China(Nos.41071286&41171346)Hubei Provincial Science and Technology Department(2007ABA276).
文摘It is important to describe misclassification errors in land cover maps and to quantify their propagation through geo-processing to resultant information products,such as land cover change maps.Geostatistical simulation is widely used in error modeling,as it can generate equal-probable realizations of the fields being considered,which can be summarized to facilitate error propagation analysis.To fix noninvariance in indicator simulation,discriminant space-based methods were proposed to enhance consistency in area-class mapping and replicability in uncertainty modeling,as the former is achieved by imposing means while the latter is ensured by projecting spatio-temporal correlated residuals in discriminant space to geographic space through a mapping process.This paper explores discriminant models for error propagation in land cover change detection,followed by experiments based on bi-temporal remote sensing images.It was found that misclassification error propagation is effectively characterized with discriminant covariate-based stochastic simulation,where spatio-temporal interdependence is taken into account.