Based on measured natural frequencies and acceleration responses,a non-probabilistic information fusion technique is proposed for the structural damage detection by adopting the set-membership identification(SMI) an...Based on measured natural frequencies and acceleration responses,a non-probabilistic information fusion technique is proposed for the structural damage detection by adopting the set-membership identification(SMI) and twostep model updating procedure.Due to the insufficiency and uncertainty of information obtained from measurements,the uncertain problem of damage identification is addressed with interval variables in this paper.Based on the first-order Taylor series expansion,the interval bounds of the elemental stiffness parameters in undamaged and damaged models are estimated,respectively.The possibility of damage existence(PoDE) in elements is proposed as the quantitative measure of structural damage probability,which is more reasonable in the condition of insufficient measurement data.In comparison with the identification method based on a single kind of information,the SMI method will improve the accuracy in damage identification,which reflects the information fusion concept based on the non-probabilistic set.A numerical example is performed to demonstrate the feasibility and effectiveness of the proposed technique.展开更多
In order to ensure the service security of space structures under wind load, the stress identification method based on the combination of fuzzy pattern recognition and information fusion technique is proposed, in whic...In order to ensure the service security of space structures under wind load, the stress identification method based on the combination of fuzzy pattern recognition and information fusion technique is proposed, in which the measurements of limited strain sensors arranged on the structure are used. Firstly, the structure is divided into several regions according to the similarity and the most unfavorable region is selected to be the key region for stress identification, while the different numbers of the strain sensors are located on the key region and the normal regions; secondly, the different stress distributions of the key region are obtained based on the measurements of the strain sensors located on the key region and the normal regions separately, in which the fuzzy pattern recognition is used to identify the different stress distributions; thirdly, the stress distributions obtained by the measurements of sensors in normal regions are selected to calculate the synthesized stress distribution of the key region by D-S evidence theory; fourthly, the weighted fusion algorithm is used to assign the different fusion coefficients to the selected stress distributions obtained by the measurements of the normal regions and the key region, while the synthesized stress distribution of the key region can be obtained. Numerical study on a lattice shell model is carried out to validate the reliability of the proposed stress identification method. The simulated results indicate that the method can improve identification accuracy and be effective by different noise disturbing.展开更多
Technological advancement of measurement systems has enhanced the accuracy of power quality assessment by using a combination of measured information. This paper proposes a novel approach for estimating power quality ...Technological advancement of measurement systems has enhanced the accuracy of power quality assessment by using a combination of measured information. This paper proposes a novel approach for estimating power quality based on information fusion technique of Dempster-Shafer(D-S) evidence theory. First, in order to accurately extract transient features regarding power quality indexes, wavelet packet transform and lifting wavelet transform are proposed to detect various disturbance signals measurement. By using many kinds of transformed transient indexes and steady state indexes, a novel reliability distribution function is constructed,and synthesized assessment index of power quality is drafted based on information fusion technique of D-S evidence theory. Finally,the simulation results prove that D-S evidence theory is a more effective means for evaluating the power quality.展开更多
基金supported by the Specialized Research Fund for the Doctoral Program of Higher Education (20091102120023)the Aeronautical Science Foundation of China (2012ZA51010)+1 种基金the National Natural Science Foundation of China (11002013)Defense Industrial Technology Development Program (A2120110001 and B2120110011)
文摘Based on measured natural frequencies and acceleration responses,a non-probabilistic information fusion technique is proposed for the structural damage detection by adopting the set-membership identification(SMI) and twostep model updating procedure.Due to the insufficiency and uncertainty of information obtained from measurements,the uncertain problem of damage identification is addressed with interval variables in this paper.Based on the first-order Taylor series expansion,the interval bounds of the elemental stiffness parameters in undamaged and damaged models are estimated,respectively.The possibility of damage existence(PoDE) in elements is proposed as the quantitative measure of structural damage probability,which is more reasonable in the condition of insufficient measurement data.In comparison with the identification method based on a single kind of information,the SMI method will improve the accuracy in damage identification,which reflects the information fusion concept based on the non-probabilistic set.A numerical example is performed to demonstrate the feasibility and effectiveness of the proposed technique.
文摘In order to ensure the service security of space structures under wind load, the stress identification method based on the combination of fuzzy pattern recognition and information fusion technique is proposed, in which the measurements of limited strain sensors arranged on the structure are used. Firstly, the structure is divided into several regions according to the similarity and the most unfavorable region is selected to be the key region for stress identification, while the different numbers of the strain sensors are located on the key region and the normal regions; secondly, the different stress distributions of the key region are obtained based on the measurements of the strain sensors located on the key region and the normal regions separately, in which the fuzzy pattern recognition is used to identify the different stress distributions; thirdly, the stress distributions obtained by the measurements of sensors in normal regions are selected to calculate the synthesized stress distribution of the key region by D-S evidence theory; fourthly, the weighted fusion algorithm is used to assign the different fusion coefficients to the selected stress distributions obtained by the measurements of the normal regions and the key region, while the synthesized stress distribution of the key region can be obtained. Numerical study on a lattice shell model is carried out to validate the reliability of the proposed stress identification method. The simulated results indicate that the method can improve identification accuracy and be effective by different noise disturbing.
基金supported by National Natural Science Foundation of China(No.51177142)Natural Science Foundation of Hebei Province(No.F2012203063)
文摘Technological advancement of measurement systems has enhanced the accuracy of power quality assessment by using a combination of measured information. This paper proposes a novel approach for estimating power quality based on information fusion technique of Dempster-Shafer(D-S) evidence theory. First, in order to accurately extract transient features regarding power quality indexes, wavelet packet transform and lifting wavelet transform are proposed to detect various disturbance signals measurement. By using many kinds of transformed transient indexes and steady state indexes, a novel reliability distribution function is constructed,and synthesized assessment index of power quality is drafted based on information fusion technique of D-S evidence theory. Finally,the simulation results prove that D-S evidence theory is a more effective means for evaluating the power quality.