Purpose:The purpose of this study is to serve as a comprehensive review of the existing annotated corpora.This review study aims to provide information on the existing annotated corpora for event extraction,which are ...Purpose:The purpose of this study is to serve as a comprehensive review of the existing annotated corpora.This review study aims to provide information on the existing annotated corpora for event extraction,which are limited but essential for training and improving the existing event extraction algorithms.In addition to the primary goal of this study,it provides guidelines for preparing an annotated corpus and suggests suitable tools for the annotation task.Design/methodology/approach:This study employs an analytical approach to examine available corpus that is suitable for event extraction tasks.It offers an in-depth analysis of existing event extraction corpora and provides systematic guidelines for researchers to develop accurate,high-quality corpora.This ensures the reliability of the created corpus and its suitability for training machine learning algorithms.Findings:Our exploration reveals a scarcity of annotated corpora for event extraction tasks.In particular,the English corpora are mainly focused on the biomedical and general domains.Despite the issue of annotated corpora scarcity,there are several high-quality corpora available and widely used as benchmark datasets.However,access to some of these corpora might be limited owing to closed-access policies or discontinued maintenance after being initially released,rendering them inaccessible owing to broken links.Therefore,this study documents the available corpora for event extraction tasks.Research limitations:Our study focuses only on well-known corpora available in English and Chinese.Nevertheless,this study places a strong emphasis on the English corpora due to its status as a global lingua franca,making it widely understood compared to other languages.Practical implications:We genuinely believe that this study provides valuable knowledge that can serve as a guiding framework for preparing and accurately annotating events from text corpora.It provides comprehensive guidelines for researchers to improve the quality of corpus annotations,especially for event extraction tasks across various domains.Originality/value:This study comprehensively compiled information on the existing annotated corpora for event extraction tasks and provided preparation guidelines.展开更多
As Natural Language Processing(NLP)continues to advance,driven by the emergence of sophisticated large language models such as ChatGPT,there has been a notable growth in research activity.This rapid uptake reflects in...As Natural Language Processing(NLP)continues to advance,driven by the emergence of sophisticated large language models such as ChatGPT,there has been a notable growth in research activity.This rapid uptake reflects increasing interest in the field and induces critical inquiries into ChatGPT’s applicability in the NLP domain.This review paper systematically investigates the role of ChatGPT in diverse NLP tasks,including information extraction,Name Entity Recognition(NER),event extraction,relation extraction,Part of Speech(PoS)tagging,text classification,sentiment analysis,emotion recognition and text annotation.The novelty of this work lies in its comprehensive analysis of the existing literature,addressing a critical gap in understanding ChatGPT’s adaptability,limitations,and optimal application.In this paper,we employed a systematic stepwise approach following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses(PRISMA)framework to direct our search process and seek relevant studies.Our review reveals ChatGPT’s significant potential in enhancing various NLP tasks.Its adaptability in information extraction tasks,sentiment analysis,and text classification showcases its ability to comprehend diverse contexts and extract meaningful details.Additionally,ChatGPT’s flexibility in annotation tasks reducesmanual efforts and accelerates the annotation process,making it a valuable asset in NLP development and research.Furthermore,GPT-4 and prompt engineering emerge as a complementary mechanism,empowering users to guide the model and enhance overall accuracy.Despite its promising potential,challenges persist.The performance of ChatGP Tneeds tobe testedusingmore extensivedatasets anddiversedata structures.Subsequently,its limitations in handling domain-specific language and the need for fine-tuning in specific applications highlight the importance of further investigations to address these issues.展开更多
The fourth international conference on Web information systems and applications (WISA 2007) has received 409 submissions and has accepted 37 papers for publication in this issue. The papers cover broad research area...The fourth international conference on Web information systems and applications (WISA 2007) has received 409 submissions and has accepted 37 papers for publication in this issue. The papers cover broad research areas, including Web mining and data warehouse, Deep Web and Web integration, P2P networks, text processing and information retrieval, as well as Web Services and Web infrastructure. After briefly introducing the WISA conference, the survey outlines the current activities and future trends concerning Web information systems and applications based on the papers accepted for publication.展开更多
In this paper, a new context free stemmer is proposed which consists of the combination of traditional rule based system with string similarity approach. This algorithm can be called as hybrid algorithm. It is languag...In this paper, a new context free stemmer is proposed which consists of the combination of traditional rule based system with string similarity approach. This algorithm can be called as hybrid algorithm. It is language dependent algorithm. Context free stemmer means that stemmer which stems the word that is not based on the context i.e., for every context such rule is applied. After stripping the words using traditional context free rule based approach, it may over stem or under stem the inflected words which are overcome by applying string similarity function of dynamic programming. For measuring the string similarity function, edit distance is used. The stripped inflected word is compared with the words stored in a text database available. That word having minimum distance is taken as the substitution of the stripped inflected word which leads to the stem of it. The concept of traditional rule based system and corpus based approach is heavily used in this approach. This algorithm is tested for Nepali Language which is based on Devanagari Script. The approach has given better result in comparison to traditional rule based system particularly for Nepali Language only. The total accuracy of this hybrid algorithm is 70.10% whereas the total accuracy of traditional rule based system is 68.43%.展开更多
Speech or Natural language contents are major tools of communication. This research paper presents a natural language processing based automated system for understanding speech language text. A new rule based model ha...Speech or Natural language contents are major tools of communication. This research paper presents a natural language processing based automated system for understanding speech language text. A new rule based model has been presented for analyzing the natural languages and extracting the relative meanings from the given text. User writes the natural language text in simple English in a few paragraphs and the designed system has a sound ability of analyzing the given script by the user. After composite analysis and extraction of associated information, the designed system gives particular meanings to an assortment of speech language text on the basis of its context. The designed system uses standard speech language rules that are clearly defined for all speech languages as English, Urdu, Chinese, Arabic, French, etc. The designed system provides a quick and reliable way to comprehend speech language context and generate respective meanings.展开更多
情感分类是一项具有较大实用价值的分类技术,它可以在一定程度上解决网络评论信息杂乱的现象,方便用户准确定位所需信息。目前针对中文情感分类的研究相对较少,其中各种有监督学习方法的分类效果以及文本特征表示方法和特征选择机制等...情感分类是一项具有较大实用价值的分类技术,它可以在一定程度上解决网络评论信息杂乱的现象,方便用户准确定位所需信息。目前针对中文情感分类的研究相对较少,其中各种有监督学习方法的分类效果以及文本特征表示方法和特征选择机制等因素对分类性能的影响更是亟待研究的问题。本文以n-gram以及名词、动词、形容词、副词作为不同的文本表示特征,以互信息、信息增益、CHI统计量和文档频率作为不同的特征选择方法,以中心向量法、KNN、Winnow、Na ve Bayes和SVM作为不同的文本分类方法,在不同的特征数量和不同规模的训练集情况下,分别进行了中文情感分类实验,并对实验结果进行了比较,对比结果表明:采用Bi Grams特征表示方法、信息增益特征选择方法和SVM分类方法,在足够大训练集和选择适当数量特征的情况下,情感分类能取得较好的效果。展开更多
文摘Purpose:The purpose of this study is to serve as a comprehensive review of the existing annotated corpora.This review study aims to provide information on the existing annotated corpora for event extraction,which are limited but essential for training and improving the existing event extraction algorithms.In addition to the primary goal of this study,it provides guidelines for preparing an annotated corpus and suggests suitable tools for the annotation task.Design/methodology/approach:This study employs an analytical approach to examine available corpus that is suitable for event extraction tasks.It offers an in-depth analysis of existing event extraction corpora and provides systematic guidelines for researchers to develop accurate,high-quality corpora.This ensures the reliability of the created corpus and its suitability for training machine learning algorithms.Findings:Our exploration reveals a scarcity of annotated corpora for event extraction tasks.In particular,the English corpora are mainly focused on the biomedical and general domains.Despite the issue of annotated corpora scarcity,there are several high-quality corpora available and widely used as benchmark datasets.However,access to some of these corpora might be limited owing to closed-access policies or discontinued maintenance after being initially released,rendering them inaccessible owing to broken links.Therefore,this study documents the available corpora for event extraction tasks.Research limitations:Our study focuses only on well-known corpora available in English and Chinese.Nevertheless,this study places a strong emphasis on the English corpora due to its status as a global lingua franca,making it widely understood compared to other languages.Practical implications:We genuinely believe that this study provides valuable knowledge that can serve as a guiding framework for preparing and accurately annotating events from text corpora.It provides comprehensive guidelines for researchers to improve the quality of corpus annotations,especially for event extraction tasks across various domains.Originality/value:This study comprehensively compiled information on the existing annotated corpora for event extraction tasks and provided preparation guidelines.
文摘As Natural Language Processing(NLP)continues to advance,driven by the emergence of sophisticated large language models such as ChatGPT,there has been a notable growth in research activity.This rapid uptake reflects increasing interest in the field and induces critical inquiries into ChatGPT’s applicability in the NLP domain.This review paper systematically investigates the role of ChatGPT in diverse NLP tasks,including information extraction,Name Entity Recognition(NER),event extraction,relation extraction,Part of Speech(PoS)tagging,text classification,sentiment analysis,emotion recognition and text annotation.The novelty of this work lies in its comprehensive analysis of the existing literature,addressing a critical gap in understanding ChatGPT’s adaptability,limitations,and optimal application.In this paper,we employed a systematic stepwise approach following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses(PRISMA)framework to direct our search process and seek relevant studies.Our review reveals ChatGPT’s significant potential in enhancing various NLP tasks.Its adaptability in information extraction tasks,sentiment analysis,and text classification showcases its ability to comprehend diverse contexts and extract meaningful details.Additionally,ChatGPT’s flexibility in annotation tasks reducesmanual efforts and accelerates the annotation process,making it a valuable asset in NLP development and research.Furthermore,GPT-4 and prompt engineering emerge as a complementary mechanism,empowering users to guide the model and enhance overall accuracy.Despite its promising potential,challenges persist.The performance of ChatGP Tneeds tobe testedusingmore extensivedatasets anddiversedata structures.Subsequently,its limitations in handling domain-specific language and the need for fine-tuning in specific applications highlight the importance of further investigations to address these issues.
文摘The fourth international conference on Web information systems and applications (WISA 2007) has received 409 submissions and has accepted 37 papers for publication in this issue. The papers cover broad research areas, including Web mining and data warehouse, Deep Web and Web integration, P2P networks, text processing and information retrieval, as well as Web Services and Web infrastructure. After briefly introducing the WISA conference, the survey outlines the current activities and future trends concerning Web information systems and applications based on the papers accepted for publication.
文摘In this paper, a new context free stemmer is proposed which consists of the combination of traditional rule based system with string similarity approach. This algorithm can be called as hybrid algorithm. It is language dependent algorithm. Context free stemmer means that stemmer which stems the word that is not based on the context i.e., for every context such rule is applied. After stripping the words using traditional context free rule based approach, it may over stem or under stem the inflected words which are overcome by applying string similarity function of dynamic programming. For measuring the string similarity function, edit distance is used. The stripped inflected word is compared with the words stored in a text database available. That word having minimum distance is taken as the substitution of the stripped inflected word which leads to the stem of it. The concept of traditional rule based system and corpus based approach is heavily used in this approach. This algorithm is tested for Nepali Language which is based on Devanagari Script. The approach has given better result in comparison to traditional rule based system particularly for Nepali Language only. The total accuracy of this hybrid algorithm is 70.10% whereas the total accuracy of traditional rule based system is 68.43%.
文摘Speech or Natural language contents are major tools of communication. This research paper presents a natural language processing based automated system for understanding speech language text. A new rule based model has been presented for analyzing the natural languages and extracting the relative meanings from the given text. User writes the natural language text in simple English in a few paragraphs and the designed system has a sound ability of analyzing the given script by the user. After composite analysis and extraction of associated information, the designed system gives particular meanings to an assortment of speech language text on the basis of its context. The designed system uses standard speech language rules that are clearly defined for all speech languages as English, Urdu, Chinese, Arabic, French, etc. The designed system provides a quick and reliable way to comprehend speech language context and generate respective meanings.
文摘情感分类是一项具有较大实用价值的分类技术,它可以在一定程度上解决网络评论信息杂乱的现象,方便用户准确定位所需信息。目前针对中文情感分类的研究相对较少,其中各种有监督学习方法的分类效果以及文本特征表示方法和特征选择机制等因素对分类性能的影响更是亟待研究的问题。本文以n-gram以及名词、动词、形容词、副词作为不同的文本表示特征,以互信息、信息增益、CHI统计量和文档频率作为不同的特征选择方法,以中心向量法、KNN、Winnow、Na ve Bayes和SVM作为不同的文本分类方法,在不同的特征数量和不同规模的训练集情况下,分别进行了中文情感分类实验,并对实验结果进行了比较,对比结果表明:采用Bi Grams特征表示方法、信息增益特征选择方法和SVM分类方法,在足够大训练集和选择适当数量特征的情况下,情感分类能取得较好的效果。